Download presentation
Presentation is loading. Please wait.
Published byἈρίστων Μπότσαρης Modified over 6 years ago
1
It is composed of three types of molecular structures:
Concept 6.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell The cytoskeleton is a network of fibers extending throughout the cytoplasm It organizes the cell’s structures and activities, anchoring many organelles It is composed of three types of molecular structures: Microtubules Microfilaments Intermediate filaments For the Cell Biology Video The Cytoskeleton in a Neuron Growth Cone, go to Animation and Video Files For the Cell Biology Video Cytoskeletal Protein Dynamics, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
2
Microtubule Microfilaments 0.25 µm Fig. 6-20
Figure 6.20 The cytoskeleton Microfilaments 0.25 µm
3
Roles of the Cytoskeleton: Support, Motility, and Regulation
The cytoskeleton helps to support the cell and maintain its shape It interacts with motor proteins to produce motility Inside the cell, vesicles can travel along “monorails” provided by the cytoskeleton Recent evidence suggests that the cytoskeleton may help regulate biochemical activities Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
4
Receptor for motor protein
Fig. 6-21 Vesicle ATP Receptor for motor protein Motor protein (ATP powered) Microtubule of cytoskeleton (a) Microtubule Vesicles 0.25 µm Figure 6.21 Motor proteins and the cytoskeleton (b)
5
Components of the Cytoskeleton
Three main types of fibers make up the cytoskeleton: Microtubules are the thickest of the three components of the cytoskeleton Microfilaments, also called actin filaments, are the thinnest components Intermediate filaments are fibers with diameters in a middle range For the Cell Biology Video Actin Network in Crawling Cells, go to Animation and Video Files. For the Cell Biology Video Actin Visualization in Dendrites, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
6
Table 6-1 Table 6-1 10 µm 10 µm 10 µm Column of tubulin dimers
Keratin proteins Actin subunit Fibrous subunit (keratins coiled together) 25 nm 7 nm 8–12 nm Tubulin dimer
7
10 µm Column of tubulin dimers Tubulin dimer 25 nm Table 6-1a
8
Table 6-1b 10 µm Table 6-1b Actin subunit 7 nm
9
Fibrous subunit (keratins coiled together)
Table 6-1c 5 µm Table 6-1c Keratin proteins Fibrous subunit (keratins coiled together) 8–12 nm
10
Functions of microtubules:
Microtubules are hollow rods about 25 nm in diameter and about 200 nm to 25 microns long Functions of microtubules: Shaping the cell Guiding movement of organelles Separating chromosomes during cell division For the Cell Biology Video Transport Along Microtubules, go to Animation and Video Files. For the Cell Biology Video Movement of Organelles in Vivo, go to Animation and Video Files. For the Cell Biology Video Movement of Organelles in Vitro, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
11
Centrosomes and Centrioles
In many cells, microtubules grow out from a centrosome near the nucleus The centrosome is a “microtubule-organizing center” In animal cells, the centrosome has a pair of centrioles, each with nine triplets of microtubules arranged in a ring Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
12
Longitudinal section of one centriole Microtubules Cross section
Fig. 6-22 Centrosome Microtubule Centrioles 0.25 µm Figure 6.22 Centrosome containing a pair of centrioles Longitudinal section of one centriole Microtubules Cross section of the other centriole
13
Video: Paramecium Cilia
Cilia and Flagella Microtubules control the beating of cilia and flagella, locomotor appendages of some cells Cilia and flagella differ in their beating patterns Video: Chlamydomonas Video: Paramecium Cilia Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
14
Direction of organism’s movement
Fig. 6-23 Direction of swimming (a) Motion of flagella 5 µm Direction of organism’s movement Figure 6.23a A comparison of the beating of flagella and cilia—motion of flagella Power stroke Recovery stroke (b) Motion of cilia 15 µm
15
Animation: Cilia and Flagella
Cilia and flagella share a common ultrastructure: A core of microtubules sheathed by the plasma membrane A basal body that anchors the cilium or flagellum A motor protein called dynein, which drives the bending movements of a cilium or flagellum Animation: Cilia and Flagella Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
16
Cross section of cilium
Fig. 6-24 Outer microtubule doublet Plasma membrane 0.1 µm Dynein proteins Central microtubule Radial spoke Protein cross-linking outer doublets Microtubules (b) Cross section of cilium Plasma membrane Basal body 0.5 µm (a) Longitudinal section of cilium 0.1 µm Figure 6.24 Ultrastructure of a eukaryotic flagellum or motile cilium Triplet (c) Cross section of basal body
17
How dynein “walking” moves flagella and cilia:
Dynein arms alternately grab, move, and release the outer microtubules Protein cross-links limit sliding Forces exerted by dynein arms cause doublets to curve, bending the cilium or flagellum For the Cell Biology Video Motion of Isolated Flagellum, go to Animation and Video Files. For the Cell Biology Video Flagellum Movement in Swimming Sperm, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
18
Figure 6.25 How dynein “walking” moves flagella and cilia
Microtubule doublets ATP Dynein protein (a) Effect of unrestrained dynein movement ATP Cross-linking proteins inside outer doublets Anchorage in cell Figure 6.25 How dynein “walking” moves flagella and cilia (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion
19
(a) Effect of unrestrained dynein movement
Fig. 6-25a Microtubule doublets ATP Figure 6.25a How dynein “walking” moves flagella and cilia Dynein protein (a) Effect of unrestrained dynein movement
20
Cross-linking proteins inside outer doublets
Fig. 6-25b ATP Cross-linking proteins inside outer doublets Anchorage in cell (b) Effect of cross-linking proteins Figure 6.25b, c How dynein “walking” moves flagella and cilia 1 3 2 (c) Wavelike motion
21
Microfilaments (Actin Filaments)
Microfilaments are solid rods about 7 nm in diameter, built as a twisted double chain of actin subunits The structural role of microfilaments is to bear tension, resisting pulling forces within the cell They form a 3-D network called the cortex just inside the plasma membrane to help support the cell’s shape Bundles of microfilaments make up the core of microvilli of intestinal cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
22
Microfilaments (actin filaments)
Fig. 6-26 Microvillus Plasma membrane Microfilaments (actin filaments) Figure 6.26 A structural role of microfilaments Intermediate filaments 0.25 µm
23
Microfilaments that function in cellular motility contain the protein myosin in addition to actin
In muscle cells, thousands of actin filaments are arranged parallel to one another Thicker filaments composed of myosin interdigitate with the thinner actin fibers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
24
Figure 6.27 Microfilaments and motility
Muscle cell Actin filament Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Figure 6.27 Microfilaments and motility Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Vacuole Parallel actin filaments Cell wall (c) Cytoplasmic streaming in plant cells
25
Muscle cell Actin filament Myosin filament Myosin arm
Fig, 6-27a Muscle cell Actin filament Myosin filament Myosin arm Figure 6.27a Microfilaments and motility (a) Myosin motors in muscle cell contraction
26
Cortex (outer cytoplasm): gel with actin network
Fig. 6-27bc Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Figure 6.27b,c Microfilaments and motility Vacuole Parallel actin filaments Cell wall (c) Cytoplasmic streaming in plant cells
27
Localized contraction brought about by actin and myosin also drives amoeboid movement
Pseudopodia (cellular extensions) extend and contract through the reversible assembly and contraction of actin subunits into microfilaments Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
28
Video: Cytoplasmic Streaming
Cytoplasmic streaming is a circular flow of cytoplasm within cells This streaming speeds distribution of materials within the cell In plant cells, actin-myosin interactions and sol-gel transformations drive cytoplasmic streaming Video: Cytoplasmic Streaming Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
29
Intermediate Filaments
Intermediate filaments range in diameter from 8–12 nanometers, larger than microfilaments but smaller than microtubules They support cell shape and fix organelles in place Intermediate filaments are more permanent cytoskeleton fixtures than the other two classes For the Cell Biology Video Interphase Microtubule Dynamics, go to Animation and Video Files. For the Cell Biology Video Microtubule Sliding in Flagellum Movement, go to Animation and Video Files. For the Cell Biology Video Microtubule Dynamics, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
30
These extracellular structures include:
Concept 6.7: Extracellular components and connections between cells help coordinate cellular activities Most cells synthesize and secrete materials that are external to the plasma membrane These extracellular structures include: Cell walls of plants The extracellular matrix (ECM) of animal cells Intercellular junctions For the Cell Biology Video Ciliary Motion, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
31
Prokaryotes, fungi, and some protists also have cell walls
Cell Walls of Plants The cell wall is an extracellular structure that distinguishes plant cells from animal cells Prokaryotes, fungi, and some protists also have cell walls The cell wall protects the plant cell, maintains its shape, and prevents excessive uptake of water Plant cell walls are made of cellulose fibers embedded in other polysaccharides and protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
32
Plant cell walls may have multiple layers:
Primary cell wall: relatively thin and flexible Middle lamella: thin layer between primary walls of adjacent cells Secondary cell wall (in some cells): added between the plasma membrane and the primary cell wall Plasmodesmata are channels between adjacent plant cells For the Cell Biology Video E-cadherin Expression, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
33
Secondary cell wall Primary cell wall Middle lamella Central vacuole
Fig. 6-28 Secondary cell wall Primary cell wall Middle lamella 1 µm Central vacuole Cytosol Figure 6.28 Plant cell walls Plasma membrane Plant cell walls Plasmodesmata
34
RESULTS 10 µm Distribution of cellulose synthase over time
Fig. 6-29 RESULTS 10 µm Figure 6.29 What role do microtubules play in orienting deposition of cellulose in cell walls? Distribution of cellulose synthase over time Distribution of microtubules over time
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.