Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chap 6: Security and Protection

Similar presentations


Presentation on theme: "Chap 6: Security and Protection"— Presentation transcript:

1 Chap 6: Security and Protection
2018/11/8

2 Protection methods 2018/11/8

3 6.1 Secure communications
2018/11/8

4 Cryptology 2018/11/8

5 Basic tools Encryption algorithms One-way functions H( ) 2018/11/8

6 One-way function example
B B’ 16 bytes each 32 bytes 2018/11/8

7 Secret key encryption %crypt K <plaintxt>ciphertxt
Decryption C=E K (P) Plaintext P Ciphertext P EK(.) DK(.) 64 bits 64 bits Key K Key K DES: uses 56 bit keys %crypt K <plaintxt>ciphertxt % crypt K <ciphertxt>plaintxt IDEA: uses 128 bit keys 2018/11/8

8 Brute-force key search
Key size (bits) Key space size Mean time required at 1 key test/msec 32 232 = 4.3 x 109 35.8 minutes 56 (DES) 256 = 7.2 x 1016 1,142 years 128 2128 = 3.4 x 1038 5.4 x 1024 = 300 billion big bangs 168 2168 = 3.7 x 1050 5.9 x 1036 big bangs Don’t get impressed easily: DES can now be cracked in hours! 2018/11/8

9 Public key encryption scheme
Decryption Plaintext P Ciphertext C P DK-(.) E K+ (.) Public key K+ Private key K- 2018/11/8

10 Public key encryption RSA: Rivest, Shamir and Adleman; Reversible
Encryption: C = Pe mod n Decryption: P = Cd mod n K+ = (e,n), K- = (d,n) Reversible Encryption Decryption Plaintext P Ciphertext C P DK-(.) EK+(.) Private key K- Public key K+ 2018/11/8

11 Example N=55, e = 7, d = 23 “RSA” = “18, 19, 1” C1 =187 mod 55 = 17
P1 =1723 mod 55 = 18 P2 =2423 mod 55 = 19 P3 =123 mod 55 = 1 2018/11/8

12 Complexity of mod arithmetic
1723 mod 55 = mod 55 = (1716 mod 55) (174 mod 55) (172 mod 55) (17 mod 55) 172 mod 55 = 14; 174 mod 55 = (172 mod 55) (172 mod 55) = 142 mod 55 = 31; 178 mod 55 = 312 mod 55 = 26; 1716 mod 55 = 262 mod 55 = 16; 1723 mod 55 = (16*31*14*17) mod 55 = 18 (M100 digits) can be computed using only 2log ~660 multiplications 2018/11/8

13 RSA detail e x d = 1 mod ((p – 1) x (q – 1))
n = p x q (p = 5, q = 11 in previous example) Choose the encryption key e e and (p –1) x (q – 1) are relatively prime Compute decryption key d such that e x d = 1 mod ((p – 1) x (q – 1)) 2018/11/8

14 Notes on RSA 2018/11/8

15 Application of public key encryption to digital signature
Let K+{m} = EK+ (m) and K-{m} = DK- (m) for short Assume K-{ K+{m} } = K+{ K-{m} } = m K+: public key K-: private key RSA has this property 2018/11/8

16 Message Digest (for message integrity)
Received msg: m MD5(m) Compare MD5(m) 2018/11/8

17 Message Digest Make it tamper proof using K+ and K− Received msg:
m     K− { MD5(m) } K+ K− { MD5(m)} Compare MD5(m) 2018/11/8

18 Message Integrity Protocol
MD5 with RSA signature Sender Alice (msg m) Encrypt msg MD5(m) by A’s private key, and send m + K-A{ MD5(m) } Receiver Bob Compute MD5(m) using m. Decrypt signature with A’s public key, i.e., apply K+A( ) to K-A{ MD5(m) } to extract MD5(m) Compare the two 2018/11/8

19 PGP (Pretty Good Privacy) for singed messages
Pick random key k, encrypt whole message, m + K-A{MD5(m)} and append encrypted k: k{ m + K-A{MD5(m)} } + K+B{k} Receiver B decrypts K+B{k} first, retrieving k, with which m + K-A{MD5(m)} can be recovered 2018/11/8

20 More on PGP http://www.pdpi.com man pgp (Unix man page)
mkdir $HOME/.pgp /*to create keyring pgp –kg /*create public/private keys Will prompt for pass phrase and random number pgp –e text her_userid /*recipient public key used, text.pgp generated 2018/11/8


Download ppt "Chap 6: Security and Protection"

Similar presentations


Ads by Google