Download presentation
Presentation is loading. Please wait.
Published byJoão Guilherme Cortês Aranha Modified over 6 years ago
1
Stochastic Differential Equations and Random Matrices
Alan Edelman MIT: Dept of Mathematics, Computer Science Artificial Intelligence Laboratory SIAM Applied Linear Algebra July 18, 2003 11/8/2018
2
Subject + Random = Wow! Quantum Mechanics Statistical Mechanics
Randomized Algorithms Random Variation & Natural Selection Option Pricing Model Why not applied linear algebra???? 11/8/2018
3
Everyone’s Favorite Tridiagonal
-2 1 1 n2 … … … … … d2 dx2 11/8/2018
4
Everyone’s Favorite Tridiagonal
-2 1 G 1 (βn)1/2 1 n2 … … … + … … dW β1/2 d2 dx2 + 11/8/2018
5
G 11/8/2018
6
G 11/8/2018
7
7 G O 11/8/2018
8
7 G O 11/8/2018
9
7 G O 11/8/2018
10
7 G O 11/8/2018
11
7 G O 11/8/2018
12
7 G O 11/8/2018
13
7 G O 11/8/2018
14
7 G O 11/8/2018
15
7 G O 11/8/2018
16
7 G O 11/8/2018
17
7 G O 6 11/8/2018
18
7 G O 6 11/8/2018
19
7 G O 6 11/8/2018
20
7 G O 6 11/8/2018
21
7 G O 6 11/8/2018
22
7 G O 6 11/8/2018
23
7 G O 6 11/8/2018
24
7 G O 6 11/8/2018
25
7 G O 6 11/8/2018
26
7 G O 6 5 11/8/2018
27
7 G O 6 5 11/8/2018
28
7 G O 6 5 11/8/2018
29
7 G O 6 5 11/8/2018
30
7 G O 6 5 11/8/2018
31
7 G O 6 5 11/8/2018
32
7 G O 6 5 11/8/2018
33
7 G O 6 5 11/8/2018
34
7 G O 6 5 4 11/8/2018
35
7 G O 6 5 4 11/8/2018
36
7 G O 6 5 4 11/8/2018
37
7 G O 6 5 4 11/8/2018
38
7 G O 6 5 4 11/8/2018
39
7 G O 6 5 4 11/8/2018
40
7 G O 6 5 4 11/8/2018
41
7 G O 6 5 4 3 11/8/2018
42
7 G O 6 5 4 3 11/8/2018
43
7 G O 6 5 4 3 11/8/2018
44
7 G O 6 5 4 3 11/8/2018
45
7 G O 6 5 4 3 11/8/2018
46
7 G O 6 5 4 3 11/8/2018
47
7 G O 6 5 4 3 2 11/8/2018
48
7 G O 6 5 4 3 2 11/8/2018
49
7 G O 6 5 4 3 2 11/8/2018
50
7 G O 6 5 4 3 2 11/8/2018
51
7 G O 6 5 4 3 2 11/8/2018
52
7 G O 6 5 4 3 2 1 11/8/2018
53
7 G O 6 5 4 3 2 1 11/8/2018
54
G 6 5 4 3 2 1 Same idea: sym matrix to tridiagonal form
11/8/2018
55
G 6 5 4 3 2 Same idea: General beta beta:
1: reals 2: complexes 4: quaternions 11/8/2018
56
Stochastic Operator Limit
, dW β 2 x dx d + - , N(0,2) χ n β 2 1 ~ H 2) (n 1) ÷ ø ö ç è æ - … … … , G β 2 H n + 11/8/2018
57
Largest Eigenvalue Plots
11/8/2018
58
MATLAB beta=1; n=1e9; opts.disp=0;opts.issym=1;
alpha=10; k=round(alpha*n^(1/3)); % cutoff parameters d=sqrt(chi2rnd( beta*(n:-1:(n-k-1))))'; H=spdiags( d,1,k,k)+spdiags(randn(k,1),0,k,k); H=(H+H')/sqrt(4*n*beta); eigs(H,1,1,opts) 11/8/2018
59
Tricks to get O(n9) speedup
Sparse matrix storage (Only O(n) storage is used) Tridiagonal Ensemble Formulas (Any beta is available due to the tridiagonal ensemble) The Lanczos Algorithm for Eigenvalue Computation ( This allows the computation of the extreme eigenvalue faster than typical general purpose eigensolvers.) The shift-and-invert accelerator to Lanczos and Arnoldi (Since we know the eigenvalues are near 1, we can accelerate the convergence of the largest eigenvalue) The ARPACK software package as made available seamlessly in MATLAB (The Arnoldi package contains state of the art data structures and numerical choices.) The observation that if k = 10n1/3 , then the largest eigenvalue is determined numerically by the top k × k segment of n. (This is an interesting mathematical statement related to the decay of the Airy function.) 11/8/2018
60
Open Problems The distribution for general beta
Seems to be governed by a convection-diffusion equation 11/8/2018
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.