Download presentation
Presentation is loading. Please wait.
Published byMalu Sintra Bastos Modified over 6 years ago
1
Numerical Computations and Random Matrix Theory
Alan Edelman MIT: Dept of Mathematics, Computer Science AI Laboratories Friday February 25, 2005 11/8/2018
2
Wigner’s Semi-Circle The classical & most famous rand eig theorem
Let S = random symmetric Gaussian MATLAB: A=randn(n); S=(A+A’)/2; S known as the Gaussian Orthogonal Ensemble Normalized eigenvalue histogram is a semi-circle Precise statements require n etc. n=20; s=30000; d=.05; %matrix size, samples, sample dist e=[]; %gather up eigenvalues im=1; %imaginary(1) or real(0) for i=1:s, a=randn(n)+im*sqrt(-1)*randn(n);a=(a+a')/(2*sqrt(2*n*(im+1))); v=eig(a)'; e=[e v]; end hold off; [m x]=hist(e,-1.5:d:1.5); bar(x,m*pi/(2*d*n*s)); axis('square'); axis([ ]); hold on; t=-1:.01:1; plot(t,sqrt(1-t.^2),'r');
3
Tidbit of interest to “Matrix Computations” Audience
Condition Numbers and Jacobians of Matrix Functions and Factorizations or What is matrix calculus?? 11/8/2018
4
Matrix Functions and Factorizations
e.g. f(A)=A2 or [L,U]=lu(A) or [Q,R]=qr(A) U, R: n(n+1)/2 parameters L, Q: n(n-1)/2 parameters Q globally (Householder) Q locally (tangent space = Q*antisym ) The Jacobian or “df” or “linearization” is n2 x n2 f:SS2 (sym) df is n(n+1)/2 x n(n+1)/2 f:QQ2 (orth) df is n(n-1)/2 x n(n-1)/2 11/8/2018
5
Condition number of a matrix function or factorization
Jacobian Det = J = ∏σi(df)=det(df) Example 1: f(A)=A2 df(A) =kron(I,A)+kron(AT ,I) Example 2: f(A)=A-1 df(A)=-kron(A-T,A-1) ||df(A)||=||A-1||2 κ=||A|| ||A-1|| 11/8/2018
6
Matrix Factorization Jacobians
General A=LU A=UVT A=XX-1 uiin-i A=QR A=QS (polar) riim-i (i2- j2) (i+j) (i-j)2 Sym Orthogonal S=QQT S=LLT S=LDLT (i-j) 2n liin+1-i din-i Q=U VT C S S -C [ ] sin(i+ j)sin (i- j) Tridiagonal T=QQT (ti+1,i)/ qi 11/8/2018
7
Tidbit of interest to “Matrix Computations” Audience and pure mathematicians!
The most analytical random matrices seen from on high: 11/8/2018
8
Same structure everywhere!
Orthog Matrix MATLAB (A=randn(n) B=randn(n)) Hermite Sym Eig eig(A+A’) Laguerre SVD eig(A*A’) Jacobi GSVD gsvd(A,B) Fourier Eig [U,R]=qr(A+i*B) 11/8/2018
9
Same structure everywhere!
Orthog Matrix Weight Stats Graph Theory SymSpace Hermite Sym Eig exp(-x2) Normal Complete Graph non-compact A,AI,AII Laguerre SVD xαe-x Chi-squared Bipartite Graph AIII,BDI,CII Jacobi GSVD (1-x)α x (1+x)β Beta Regular Graph compact A, AI, AII, C, D, CI, D, DIII Fourier Eig eiθ AIII, BDI, CDI 11/8/2018
10
Tidbit of interest to “Matrix Computations” Audience and combinatorists!
The longest increasing subsequence 11/8/2018
11
Longest Increasing Subsequence (n=4)
Green: 4 Yellow: 3 Red: 2 Purple: 1 11/8/2018
12
Random Matrix Result # Permutations on 1..n with longest increasing subsequence ≤ k is E ( |tr(Qk)|2n) …. The 2nth moment of the absolute trace of random kxk orthogonal matrices Longest increasing subsequence is the parallel complexity of an upper triangular solve with sparsity given by Uij(π) ≠0 if π(i)≤π(j) and i≤j 11/8/2018
13
Haar or not Haar? 11/8/2018
14
Tidbit! Random Tridiagonalization leads to eigenvalues of billion by billion matrix! 11/8/2018
15
G 6 5 4 3 2 1 sym matrix to tridiagonal form
Same eigenvalue distribution as A+A’: O(n) storage !! O(n) compute 11/8/2018
16
G 6 5 4 3 2 General beta beta:
1: reals 2: complexes 4: quaternions Bidiagonal Version corresponds To Wishart matrices of Statistics 11/8/2018
17
Largest Eigenvalue of Hermite
11/8/2018
18
Painlevé Equations 11/8/2018
19
MATLAB beta=1; n=1e9; opts.disp=0;opts.issym=1;
alpha=10; k=round(alpha*n^(1/3)); % cutoff parameters d=sqrt(chi2rnd( beta*(n:-1:(n-k-1))))'; H=spdiags( d,1,k,k)+spdiags(randn(k,1),0,k,k); H=(H+H')/sqrt(4*n*beta); eigs(H,1,1,opts) 11/8/2018
20
Tricks to get O(n9) speedup
Sparse matrix storage (Only O(n) storage is used) Tridiagonal Ensemble Formulas (Any beta is available due to the tridiagonal ensemble) The Lanczos Algorithm for Eigenvalue Computation ( This allows the computation of the extreme eigenvalue faster than typical general purpose eigensolvers.) The shift-and-invert accelerator to Lanczos and Arnoldi (Since we know the eigenvalues are near 1, we can accelerate the convergence of the largest eigenvalue) The ARPACK software package as made available seamlessly in MATLAB (The Arnoldi package contains state of the art data structures and numerical choices.) The observation that if k = 10n1/3 , then the largest eigenvalue is determined numerically by the top k × k segment of n. (This is an interesting mathematical statement related to the decay of the Airy function.) 11/8/2018
21
Tidbit of interest to “Matrix Computations” Audience Stochastic Eigenequations
Continuous vs Discrete: Diff Eqns : Matrix Comps :: Cont Eig : Matrix Eigs Add probability: Stochastic Differential Equations :: Stochastic Eigenequations Finite = Random Matrix Theory 11/8/2018
22
Spacings of eigs of A+A’
11/8/2018
23
Riemann Zeta Zeros 11/8/2018
24
Stochastic Operator 11/8/2018
25
Everyone’s Favorite Tridiagonal
-2 1 1 n2 … … … … … d2 dx2 11/8/2018
26
Everyone’s Favorite Tridiagonal
-2 1 G 1 (βn)1/2 1 n2 … … … + … … dW β1/2 d2 dx2 + 11/8/2018
27
Stochastic Operator Limit
, dW β 2 x dx d + - , N(0,2) χ n β 2 1 ~ H 2) (n 1) ÷ ø ö ç è æ - … … … , G β 2 H n + 11/8/2018
28
Tidbit eig(A+B) = eig(A) + eig(B) ????? 11/8/2018
29
Free Probability vs Classical Probability
11/8/2018
30
Random Matrix Calculator
11/8/2018
31
How to use calculator 11/8/2018
32
Steps 1 and 2 11/8/2018
33
Steps 3 and 4 11/8/2018
34
Steps 5 and 6 11/8/2018
35
∫ pκ(x)pλ(x) Δ(x)β ∏i w(xi)dxi = δκλ
Multivariate Orthogonal Polynomials & Hypergeometrics of Matrix Argument The important special functions of the 21st century Begin with w(x) on I ∫ pκ(x)pλ(x) Δ(x)β ∏i w(xi)dxi = δκλ Jack Polynomials orthogonal for w=1 on the unit circle. Analogs of xm 11/8/2018
36
Multivariate Hypergeometric Functions
11/8/2018
37
Multivariate Hypergeometric Functions
11/8/2018
38
Plamen’s clever idea 11/8/2018
39
Smallest eigenvalue statistics
A=randn(m,n); hist(min(svd(A).^2)) 11/8/2018
40
Symbolic MOPS applications
A=randn(n); S=(A+A’)/2; trace(S^4) det(S^3) 11/8/2018
41
Summary Linear Algebra + Randomness !!! 11/8/2018
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.