Presentation is loading. Please wait.

Presentation is loading. Please wait.

Qi Huang, Ken Birman, Robbert van Renesse (Cornell), Wyatt Lloyd (Princeton, Facebook), Sanjeev Kumar, Harry C. Li (Facebook) An Analysis of Facebook Photo.

Similar presentations


Presentation on theme: "Qi Huang, Ken Birman, Robbert van Renesse (Cornell), Wyatt Lloyd (Princeton, Facebook), Sanjeev Kumar, Harry C. Li (Facebook) An Analysis of Facebook Photo."— Presentation transcript:

1 Qi Huang, Ken Birman, Robbert van Renesse (Cornell), Wyatt Lloyd (Princeton, Facebook), Sanjeev Kumar, Harry C. Li (Facebook) An Analysis of Facebook Photo Caching

2 250 Billion * Photos on Facebook Profile Feed Album 1 * Internet.org, Sept., 2013 Storage Backend Storage Backend Cache Layers Cache Layers Full-stack Study

3 Preview of Results 2 Current Stack Performance Opportunities for Improvement Browser cache is important (reduces 65+% request ) Photo popularity distribution shifts across layers Smarter algorithms can do much better (S4LRU) Collaborative geo-distributed cache worth trying

4 Client Facebook Photo-Serving Stack 3

5 Client-based Browser Cache Client Browser Cache Browser Cache Client 4 Local Fetch

6 Client-based Browser Cache Client Browser Cache Browser Cache (Millions) Client 5

7 Stack Choice Browser Cache Browser Cache Client Caches Storage Caches Storage Facebook Stack Akamai Content Distribution Network (CDN) Content Distribution Network (CDN) Focus: Facebook stack (Millions) 6

8 Geo-distributed Edge Cache (FIFO) Edge Cache Edge Cache (Tens) Browser Cache Browser Cache Client PoP (Millions) 7

9 Geo-distributed Edge Cache (FIFO) Edge Cache Edge Cache (Tens) Browser Cache Browser Cache Client PoP (Millions) 8 Purpose 1.Reduce cross-country latency 2.Reduce Data Center bandwidth

10 Geo-distributed Edge Cache (FIFO) Edge Cache Edge Cache (Tens) Browser Cache Browser Cache Client PoP (Millions) 9

11 Geo-distributed Edge Cache (FIFO) Edge Cache Edge Cache (Tens) Browser Cache Browser Cache Client PoP (Millions) 10

12 Single Global Origin Cache (FIFO) Browser Cache Browser Cache Edge Cache Edge Cache Origin Cache Origin Cache PoP ClientData Center (Tens)(Millions)(Four) 11

13 Single Global Origin Cache (FIFO) Browser Cache Browser Cache Edge Cache Edge Cache Origin Cache Origin Cache PoP ClientData Center (Tens)(Millions)(Four) 12 Purpose 1.Minimize I/O-bound operations

14 Single Global Origin Cache (FIFO) Browser Cache Browser Cache Edge Cache Edge Cache Origin Cache Origin Cache PoP ClientData Center (Tens)(Millions)(Four) Hash(url) 13

15 Single Global Origin Cache (FIFO) Browser Cache Browser Cache Edge Cache Edge Cache Origin Cache Origin Cache PoP ClientData Center (Tens)(Millions)(Four) 14

16 Haystack Backend Backend (Haystack) Browser Cache Browser Cache Edge Cache Edge Cache Origin Cache Origin Cache PoP ClientData Center (Tens)(Millions)(Four) 15

17 How did we collect the trace? 16

18 Trace Collection Instrumentation Scope Backend (Haystack) Browser Cache Browser Cache Edge Cache Edge Cache Origin Cache Origin Cache PoP ClientData Center (Object-based sampling) Request-based: collect X% of requests Object-based: collect reqs for X% objects 17

19 Sampling on Power-law 18 Object rank

20 Sampling on Power-law Req-based: bias on popular content, inflate cache perf 19 Object rank Req-based

21 Sampling on Power-law Object-based 20 Object rank Object-based: fair coverage of unpopular content

22 Sampling on Power-law Object-based: fair coverage of unpopular content 21 Object rank Object-based

23 Trace Collection Instrumentation Scope Backend (Haystack) Browser Cache Browser Cache Edge Cache Edge Cache Origin Cache Origin Cache PoP ClientData Center Resizer R 22

24 Analysis Traffic sheltering effects of caches Photo popularity distribution Size, algorithm, collaborative Edge In paper –Stack performance as a function of photo age –Stack performance as a function of social connectivity –Geographical traffic flow 23

25 Traffic Sheltering Backend (Haystack) Browser Cache Browser Cache Edge Cache Edge Cache Origin Cache Origin Cache PoP ClientData Center R 24

26 Photo popularity and its cache impact 25

27 Popularity Distribution Browser resembles a power-law distribution 26

28 Popularity Distribution Viral photos becomes the head for Edge 27

29 Popularity Distribution Skewness is reduced after layers of cache 28

30 Popularity Distribution Backend resembles a stretched exponential dist. 29

31 Popularity with Absolute Traffic Storage/cache designers: pick a layer 30

32 Popularity Impact on Caches 31 High Low M Lowest Each has 25% requests

33 Popularity Impact on Caches Browser traffic share decreases gradually 32

34 Popularity Impact on Caches Edge serves consistent share except for the tail 33

35 Popularity Impact on Caches Origin contributes most for low group 34

36 Popularity Impact on Caches Backend serves the tail 35

37 Can we make the cache better? 36

38 Simulation Replay the trace (25% warm up) Estimate the base cache size Evaluate two hit-ratios (object-wise, byte-wise) 37

39 Edge Cache with Different Sizes Picked San Jose edge (high traffic, median hit ratio) 38

40 Edge Cache with Different Sizes x estimates current deployment size (59% hit ratio) 39

41 Edge Cache with Different Sizes Infinite size ratio needs 45x of current capacity 40

42 Edge Cache with Different Algos Both LRU and LFU outperforms FIFO slightly 41

43 S4LRU 42

44 S4LRU 43

45 S4LRU 44

46 S4LRU 45

47 Edge Cache with Different Algos S4LRU improves the most 46

48 Edge Cache with Different Algos Clairvoyant (Bélády) shows much improvement space 47

49 Origin Cache S4LRU improves Origin more than Edge 48

50 Which Photo to Cache Recency & frequency leads S4LRU Does age, social factors also play a role? 49

51 Collaborative cache on the Edge 50

52 Geographic Coverage of Edge 51

53 Geographic Coverage of Edge 52

54 Geographic Coverage of Edge 53

55 Geographic Coverage of Edge 54

56 Geographic Coverage of Edge 55 Atlanta has 80% requests served by remote Edges

57 Geographic Coverage of Edge 56 Substantial remote traffic is normal

58 Geographic Coverage of Edge 57

59 Collaborative Edge 58

60 Collaborative Edge Independent aggregates all high-volume Edges 59

61 Collaborative Edge Collaborative Edge increases hit ratio by 18% 60 Collaborative

62 Related Work 61 Storage Analysis Content Distribution Analysis Web Analysis BSD file system (SOSP 85), Sprite ( SOSP 91), NT (SOSP 99), NetApp (SOSP 11), iBench (SOSP 11) Cooperative caching (SOSP 99), CDN vs. P2P (OSDI 02), P2P (SOSP 03), CoralCDN (NSDI 10), Flash crowds (IMC 11) Zipfian (INFOCOM 00), Flash crowds (WWW 02), Modern web traffic (IMC 11)

63 Conclusion 62 Quantify caching performance Quantify popularity changes across layers of caches Recency, frequency, age, social factors impact cache Outline potential gain of collaborative caching


Download ppt "Qi Huang, Ken Birman, Robbert van Renesse (Cornell), Wyatt Lloyd (Princeton, Facebook), Sanjeev Kumar, Harry C. Li (Facebook) An Analysis of Facebook Photo."

Similar presentations


Ads by Google