Presentation is loading. Please wait.

Presentation is loading. Please wait.

Source : Signal Processing, Volume 133, April 2017, Pages

Similar presentations


Presentation on theme: "Source : Signal Processing, Volume 133, April 2017, Pages"— Presentation transcript:

1 A separable reversible data hiding scheme for encrypted JPEG bitstreams
Source : Signal Processing, Volume 133, April 2017, Pages Authors : Jen-Chun Chang, Yi-Zhi Lu, Hsin-Lung Wu Speaker : Si-Liang He Date : 2017/12/21

2 Outline Introduction Proposed scheme Experimental results Conclusions

3 JPEG compression 1/4 Procedure of JPEG compression

4 JPEG compression 2/4 DCT Original Image 52 55 61 66 70 64 73 63 59 90
109 85 69 72 62 68 113 144 104 58 71 122 154 106 67 126 88 79 65 60 77 75 83 87 76 78 94 -415 -30 -61 27 56 -20 -2 4 -22 10 13 -7 -9 5 -47 7 77 -25 -29 -6 -49 12 34 -15 -10 6 2 -13 -4 -3 3 -8 1 -1 DCT Original Image

5 JPEG compression 3/4 DC(direct current )
The others are AC(alternating current ) 26 2 3 -1 1 DC: differential pulse code modulation (DPCM) Quantification JPEG file Entropy encoding AC: Run Length Coding (RLC) Quantization table

6 QF = QF = 50

7 JPEG compression 4/4 AC coefficients :
{0, 2, -1,0, 0, 0, 3, 0, 1, } ZRV(zero-run-value)(R,V): {(1, 2), (0, -1), (3, 3), (1,1), …} RSV (Run/Size and Value) Denote as [(RL, BL), A]: {[(1, 2), 10], [(0, 1), 0], [(11, 2), 11], [(1, 1), 1], …} RL : Binary representation of number of zero BL : Bit length of the binary representation of non-zero value A : Binary representation of non-zero value

8 Proposed scheme - flow chart

9 Proposed scheme - 1/6 Generate a pseudo-random permutation block
(1, 1) → (1, 2) → (2, 1) → (2, 2) → (1, 1)

10 Proposed scheme - 2/6 Zig-zag order {-3, -2, 2, 3}

11 Proposed scheme - 3/6 G 2 = (-3, 2, -2, 3, 2, -2, -3, 3, -2, -2, 2, 3, 2, 2, 3, 2, -2, 2, 2, 2, 2, -2, 2, 2, 2) 𝐺 2 = (11, 00, 10, 01, 00, 10, 11, 01, 10, 10, 00, 01, 00, 00, 01, 00, 10, 00, 00, 00, 00, 10, 00, 00, 00) LSB( 𝐺 2 ) = (1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) k = 6, n = 25 𝑓 𝐶 (LSB( 𝐺 2 ) ) = (0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0)

12 Proposed scheme - 4/6 𝑓 𝐶 (LSB( 𝐺 2 ) ) = (0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0)

13 Proposed scheme - 5/6 LSB( 𝐺 2 ) = (1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 𝑓 𝐶 (LSB( 𝐺 2 ) ) = (0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) LSB( 𝐺 2 ′ ) = (0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 𝐺 2 ′ = (10, 01, 11, 00, 00, 10, 10, 01, 10, 10, 00, 01, 01, 01, 00, 01, 11, 00, 00, 00, 00, 10, 00, 00, 00) (-2, 3, -3, 2, 2, -2, -2, 3, -2, -2, 2, 3, 3, 3, 2, 3, -3, 2, 2, 2, 2, -2, 2, 2, 2)

14 Proposed scheme - 6/6 embedding & extraction
LSB( 𝐺 2 ′ ) = (0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) = 5 → k = = 18 recovery (0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) ( )2 = t LSB( 𝐺 2 ) = (1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

15 Experimental results

16 Conclusions Proposed a lossless compression algorithm.
Decryption and extraction can be separable.


Download ppt "Source : Signal Processing, Volume 133, April 2017, Pages"

Similar presentations


Ads by Google