Download presentation
Presentation is loading. Please wait.
Published byIsaac Newman Modified over 6 years ago
1
Warm Up Identify the perfect square in each set. 81 25 256 196
2
Warm Up Continued Write each number as a product of prime numbers. 5. 36 6. 64 7. 196 8. 24
3
11-6 Radical Expressions Holt Algebra 1
4
An expression that contains a radical sign is a radical expression.
Examples of radical expressions: The expression under a radical sign is the radicand.
6
Remember that positive numbers have two square roots, one positive and one negative. However, indicates a nonnegative square root. When you simplify, be sure that your answer is not negative. To simplify you should write because you do not know whether x is positive or negative.
7
Example 1: Simplifying Square-Root Expressions
Simplify each expression. A. B. C.
8
Check It Out! Example 1 Simplify each expression. a. b.
9
Check It Out! Example 1 Simplify each expression. d. c.
11
Example 2A: Using the Product Property of Square Roots
Simplify. All variables represent nonnegative numbers. Simplify.
12
Example 2B: Using the Product Property of Square Roots
Simplify. All variables represent nonnegative numbers. Since x is nonnegative,
13
Check It Out! Example 2a Simplify. All variables represent nonnegative numbers. Simplify.
14
Check It Out! Example 2c Simplify. All variables represent nonnegative numbers. Simplify.
16
Example 3: Using the Quotient Property of Square Roots
Simplify. All variables represent nonnegative numbers. A. B. Simplify. Quotient Property of Square Roots. Simplify. Simplify.
17
Check It Out! Example 3 Simplify. All variables represent nonnegative numbers. a. b. Quotient Property of Square Roots. Simplify. Simplify. Simplify.
18
Check It Out! Example 3c Simplify. All variables represent nonnegative numbers. Quotient Property of Square Roots. Factor the radicand using perfect squares. Simplify.
19
Example 4B: Using the Product and Quotient Properties Together
Simplify. All variables represent nonnegative numbers. Quotient Property. Product Property. Simplify.
20
Check It Out! Example 5 A softball diamond is a square with sides of 60 feet. How long is a throw from third base to first base in softball? Give the answer as a radical expression in simplest form. Then estimate the length to the nearest tenth of a foot. 60 60 The distance from one corner of the square to the opposite one is the hypotenuse of a right triangle. Use the Pythagorean Theorem: c2 = a2 + b2.
21
Check It Out! Example 5 Continued
Solve for c. Substitute 60 for a and b. Simplify. Factor 7,200 using perfect squares.
22
Check It Out! Example 5 Continued
Use the Product Property of Square Roots. Simplify. Use a calculator and round to the nearest tenth. The distance is , or about 84.9 feet.
23
Lesson Quiz: Part I Simplify each expression. 1. 6 2. |x + 5| Simplify. All variables represent nonnegative numbers. 3. 4. 5. 6.
24
Lesson Quiz: Part II 7. Two archaeologists leave from the same campsite. One travels 10 miles due north and the other travels 6 miles due west. How far apart are the archaeologists? Give the answer as a radical expression in simplest form. Then estimate the distance to the nearest tenth of a mile. mi; 11.7mi
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.