Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hard exclusive production at HERMES

Similar presentations


Presentation on theme: "Hard exclusive production at HERMES"— Presentation transcript:

1 Hard exclusive production at HERMES
Cynthia Hadjidakis 2nd workshop on the QCD structure of the Nucleon Rome, June, 2006 Generalized Parton Distributions Compton scattering (DVCS) Exclusive mesons production Summary and perspectives

2 Hard exclusive production of photons and mesons
p0, r0L, g Q2 Q2>>, t<< 4 Generalized Parton Distributions (GPDs) H H conserve nucleon helicity E E flip nucleon helicity ~ -2 x ~ x+x x-x Vector mesons (r, w, f) Pseudoscalar mesons (p, h) DVCS (g) depends on 4 GPDs t t Add gluon exchange diagram: ZEUS for each quark flavour Hq, for gluon Hg 1 2 q L J D + S = Ji’s sum rule: (DIS) quark flavour decomposition possible from meson production GPDs depend on 3 variables: x, x, t 30%(DIS) 1 ( H(x,x,t=0) + E(x,x,t=0) ) x dx = Jquark =1/2 DS + D Lz -1 ρ0 2u+d, 9g/4 ω 2u-d, 3g/4 f s, g ρ+ u-d

3 HERMES kinematics coverage
GPDs formalism: Q2>>, t<< HERMES: <Q2>=2.4 (1-10) GeV2, -t < 0.5 GeV2 collider experiments H1, ZEUS 10-4<xB<0.021 : gluons in the proton fixed target experiments COMPASS, HERMES  0.006/0.02<xB<0.3 : gluons/valence and sea quarks CLAS  0.15<xB<0.6 : valence quarks

4 HERMES spectrometer e +/ e - 27.5 GeV PB= 55%
Tracking system: dP/P = 2 %, dq < 1 mrad (charged) Particle Identification: RICH, TRD, preshower, calorimeter Photon: calorimeter: dP/P = 5 % for high energy photon no recoil detection e+ p → e+ g (p) only e+ and g detected Exclusive reaction signed via the missing mass technique MX = ( e + p – e’ – g ) Exclusive reaction selected with a cut on MX Background contamination estimated with non-exclusive MC 1H→ <|Pt|> ~ 85 % 2H→ <|Pt|> ~ 85 % 1H↑ <|Pt|> ~ 75 % Target: polarized H, D / unpolarized H, D, N, Ne, Kr, Xe

5 Deep Virtual Compton Scattering: e p → e’ p’ g
 H, H, E, E ~ DVCS Deep Virtual Compton Scattering: e p → e’ p’ g DVCS Bethe-Heitler for HERMES kinematics: DVCS << Bethe-Heitler DVCS-BH interference leads to non-zero azimuthal asymmetry

6 DsUT DVCS asymmetries I~Ds ~ DsC ~ cosf Re{ H + x H + k E} ~
 H, H, E, E ~ DVCS DVCS asymmetries I~Ds  Different charge : e+ e- (only at HERA!) : DsC ~ cosf Re{ H + x H + k E} ~ H  Different polarisations : DsLU ~ sinf Im{H + x H + k E} ~ DsUT beam target H DsUL ~ sinf Im{H + x(H + …} ~ ~ H, H DsUT ~ sinf Im{H - E + … } H, E Suppressed by kinematical factor x = xB/(2-xB ),k = -t/4M2

7 Beam spin and charge asymmetry
 H, H, E, E ~ DVCS Beam spin and charge asymmetry Beam Spin Asymmetry Beam Charge Asymmetry [PRL87,2001] symmetrization f → |f| (cancel sin f terms from polarized beam) [hep-ex/ , subm. to PRL] L=140 pb-1 e+/- p → e+/- p g (MX<1.7 GeV) ─ P1 + P2 cos f + P3 cos 2f + P4 cos 3f L=10 pb-1 P1 = -0.01±0.02 P2 = 0.06±0.03 P3 = 0.02±0.03 P4 = 0.03±0.03 <-t> = 0.12 GeV2,<xB> = 0.1, <Q2> = 2.5 GeV2

8 Beam charge asymmetry: t-dependence
DVCS ~ ~  H, H, E, E Beam charge asymmetry: t-dependence e+/- p → e+/- p g (MX<1.7 GeV) (in HERMES acceptance) Regge, D-term Regge, no D-term fac., D-term fac., no D-term GPD calculation: different parameterization for H [Vanderhaegen et.al. (1999)] H = double distribution ~ q(x) with skewing effect D-term or not t dependence: Regge-inspired t-dependence factorized t-dependence (ebt) BCA: no sensitivty to profile parameter :bsea, bval → AC sensitive to GPD-models tiny e-p sample (L=10 pb-1) HERA: e- beam (x10) P1 = -0.01±0.02 P2 = 0.06±0.03 P3 = 0.02±0.03 P4 = 0.03±0.03 <-t> = 0.12 GeV2,<xB> = 0.1, <Q2> = 2.5 GeV2 symmetrization f → |f| (cancel sin f terms from polarized beam)

9 Longitudinal target spin asymmetry
DVCS ~ ~  H, H, E, E Longitudinal target spin asymmetry Lp = 50 pb-1 Ld = 170 pb-1 sin f in agreement with GPD models unexpected large sin 2f (NLO contributions): from qGq correlations twist-3 GPDs?

10 Transverse target spin asymmetry
DVCS ~ ~  H, H, E, E Transverse target spin asymmetry ~ AUT ~ sin(f-fS) cos(f) Im{H - E + … }+ cos(f-fS) sin(f) Im{H + … } + 2005: 2 times more statistics GPD calculation: [Goeke et.al. (2001)] , [Ellinghaus et.al. (2005)] H = double distribution Regge-inspired t-dep. D-term E = double distribution ~ sensitive to Jq: Ju (Jd=0) factorized t-dep. (dipole form factor) L = 64 pb-1 → First (model dependent) constraints on Ju and Jd ! talk by Zhenyu Ye

11 DVCS on nuclear target  H, H, E, E
~ ~  H, H, E, E DVCS on nuclear target GPDs modification in nuclear matter: spatial distribution of energy, angular momentum and shear forces inside the nuclei coherent nuclear DVCS (-t<0.05 GeV2) different from proton DVCS incoherent nuclear DVCS similar to proton DVCS (small BH cross section on neutron at small t) proton and deuteron data consistent highest t-bin may be affected by associated production (30%) 2H (720 pb-1), 4He (30 pb-1), 14N (50 pb-1), Ne (86 pb-1), Kr (135 pb-1), Xe (80 pb-1) study of properties of quarks and gluons inside nuclei

12 Beam spin asymmetry on nuclear target
DVCS ~ ~  H, H, E, E Beam spin asymmetry on nuclear target L=30 pb-1 L=86 pb-1 → clear sin f amplitude in the exclusive region for Ne and Kr → soon: Anucleus/Aproton (He, N, Ne, Kr, Xe ) t-dependence (separation of coherent and incoherent part) A-dependence for coherent production [Guzey et al. (2003)], [Liuti et al. (2005)]

13 Factorization theorem for meson production
Q2 Q2>>, t<< Meson production: wave function: additional information/uncertainty hard scale t Meson production: factorization for longitudinal photons only sT suppressed by 1/Q2 → at large Q2, sL dominates for fixed xB and t asymptotically « scaling law »

14 Vector Mesons cross sections transverse target spin asymmetry  H, E
~ | ∫ dx H(x,x,t) + E(x,x,t) |2 E kinematically suppressed at low t H = double distribution ~ q(x)/G(x) with skewing effect factorized t-dependence (ebt with slope from data) transverse target spin asymmetry AUT~ Im( H .E ) E = double distribution ~ sensitive to Jq factorized t-dependence (dipole form factor) higher order corrections cancel: scaling region reached at lower Q2

15 e p → e r0 (p): exclusive r0 selection
VECTOR MESONS e p → e r0 (p): exclusive r0 selection r0 →p+ p- : h+h- detected Missing energy DE = (M2X-M2p)/2Mp (MX = e + p – e’ – h+ – h- ) 0.6 < M2h< 1.0 GeV DE < 0.6 GeV -t’=-t+tmin<0.4 GeV2 DE < 0.6 GeV -t’< 0.4 GeV2 Fit with skewed Breit-Wigner 0.6 < M2p< 1.0 GeV -t’< 0.4 GeV2 data non exclusive MC Monte Carlo simulation of non-exclusive (DIS) background

16 extraction of sL: r0 → p+p- angular distributions
VECTOR MESONS extraction of sL: r0 → p+p- angular distributions g*-p CMS 23 SDMEs (15 unpolarised, 8 polarised) extracted in 3-D: F, f, cos q r° rest frame p’ f e’ p g* e L=250 pb-1 p+ F q p- if SCHC holds (VM retains g* helicity): → violation of SCHC → at Q2 = 2 GeV2, sL=sT

17 r0 longitudinal cross sections
VECTOR MESONS  H, E r0 longitudinal cross sections [EPJC17,2000] L = 106 pb-1 [Vanderhaegen et.al. (1999)] corrections to LO: quark transverse momenta quark exchange dominates --- 2-gluon exchange quark exchange GPD model calculations for sL: H indication of a larger gluon contribution [Diehl et.al. (2005)] [Vinnikov et.al. (2005)] [Frankfurt et.al. (1996)] more data to come: r, f, w, r+

18 r0 transverse target spin asymmetry
VECTOR MESONS  H, E r0 transverse target spin asymmetry interference between E and H [Vinnikov et.al. (2005)] - Goeke, Polyakov & Vanderhaeghen (2001) - E related to Jq  TSA sensitive to Jq sS: |ST| sin (f-fS) E H L=64 pb-1 xB x GPD model calculations (quarks+gluons GPDs) E related to Jq  TSA sensitive to Jq 2 times more data with 2005: sL/sT separation → talk by Armine Rostomyan

19 Pion pairs production: e p (d)→ e’ p (d) p+ p-
 H, E Pion pairs production: e p (d)→ e’ p (d) p+ p- Legendre moment: <P1> sensitive to the interference between different p+p- isospin states

20 Legendre Moment: Mpp dependence
PION PAIRS  H, E Legendre Moment: Mpp dependence interference between S-wave and lower r0 tail mpp < 0.6 GeV [PLB599,2004] minimum interference between S-P waves mpp ~ 0.77 GeV L=250 pb-1 indication of r0 –f2 interference mpp ~ 1.3 GeV GPD model calculations for sL: ■▲ quark exchange ― quark + 2-gluon exchange [Lehmann-Dronke et.al. (2001)]

21 Pseudoscalar Mesons cross sections target spin asymmetry  H, E ~ ~
PS MESONS  H, E ~ ~ Pseudoscalar Mesons cross sections ~ ~ ~ | ∫ dx H(x,x,t) + E(x,x,t) |2 ~ E kinematically suppressed at low t H = double distribution ~ Dq(x) with skewing effect factorized t-dependence ~ At low t and large x, E dominated by the pion pole E related to Fp ~ p+ production: target spin asymmetry ~ ~ AUT~ Im( H .E )

22 p+ cross section measurement
PS MESONS  H, E ~ ~ p+ cross section measurement L/T separation not possible sT suppressed by 1/Q2 L=250 pb-1 → at large Q2, sL dominates supported by REGGE model [Laget (2005)] GPD model calculations for sL: [Vanderhaegen et.al. (1999)] Q2 dependence is in general agreement with the theoretical expectation Corrections to LO (k┴ and soft overlap) calculations overestimate the data

23 Transverse target spin asymmetry for exclusive p+
PS MESONS  H, E ~ ~ Transverse target spin asymmetry for exclusive p+ interference between E and H ~ ~ g*L p → p+ n [Frankfurt et al. (1999)] sS: |ST| sin (f-fS) E H ~ ~ [Belitsky et al. (2001)] L = 145 pb-1

24 Future analysis: recoil detector
Jan Jun. 07 Detection of the recoiling proton associated prod. ~11% semi-incl. ~5% associated prod. ~1% semi-incl. <<1% clean reaction identification improve statistical precision (Lp = 750 pb-1, Ld = 200 pb-1) → talk by Ralf Kaiser

25 CONCLUSION Polarisation provides observable sensitive
~ ~  H E ~  H, H, E, E  H E  H E CONCLUSION GPDs probed by hard exclusive photon and meson production H DVCS: BSA, BCA excl. r0: sL excl. pions pairs H DVCS: LTSA ~ E: TTSA DVCS, excl. r0 ~ E excl. p+ : s Corrections to leading order are needed to describe the cross sections Leading order calculations describe asymmetries Jan. 06: polarized target removed, recoil detector installed and under commissioning → HERMES dedicated to exclusive processes! ~ Asymmetries: powerful tool to constrain GPD models H H E E ~ ~ ~ Reaction Observable GPDs ~ ep→epg BCA, BSA, L(T)TSA H (2u+d) ep→epρ σL H (2u+d) TTSA H.E ep→epf σL H (s) ep→epω σL H (2u-d) ep→epp+p Legendre Moment H ep→epp σtot E (u-d) TTSA H.E ep→epp σtot H (2u+d) ~ ~ ~ Hpp0: 2/3 Hu/p + 1/3 Hd/p Hpp+: Hu/p Hd/p Polarisation provides observable sensitive to different combinations of GPDS ~ ~ ~ dedicated experiments for exclusive measurements starting soon at HERMES

26

27 HERMES at DESY e-beam: e+/e-, Ee=27.5 GeV, PB= 55%
spin HERMES for longitudinal beam polarization

28 Longitudinal target spin asymmetry:sin 2f
~ ~  H, H, E, E Longitudinal target spin asymmetry:sin 2f unexpected large sin 2f: from qGq correlations twist-3 GPDs? upper limits for qGq correlations twist-3 GPDs [D. Mueller]

29 Model dependent constraint on Ju and Jd
~ ~  H, H, E, E Model dependent constraint on Ju and Jd

30 Exclusive p+ production: e p → e p+(n)
Missing Mass2 = (p-g*-p+)2 e p → e p-n : use of p- yield to subtract the non exclusive background e p → e p+ X e p → e p+ n -t (GeV2) 1 Monte Carlo (arbitrary norm.) data #events p+ enhancement Exclusive peak clearly centered at the nucleon mass Mean and width in agreement with exclusive MC Good description of data by MonteCarlo (acceptance determination) - Vanderhaeghen, Guichon & Guidal (1999) -


Download ppt "Hard exclusive production at HERMES"

Similar presentations


Ads by Google