Download presentation
Presentation is loading. Please wait.
1
9 Electromagnetic Waves
9.1 Waves in One Dimension 9.1.1 The Wave Equation. 9.1.2 Sinusoidal Waves 9.1.3 Boundary Conditions: Reflection and Transmission 9.1.4 Polarization 9.2 Electromagnetic Waves in Vacuum 9.2.1 The Wave Equation for E and B 9.2.2 Monochromatic Plane Waves 9.2.3 Energy and Momentum in Electromagnetic Waves 9.3 Electromagnetic Waves in Matter 9.3.1 Propagation in Linear Media 9.3.2 Reflection and Transmission at Normal Incidence 9.3.3 Reflection and Transmission at Oblique Incidence 9.4 Absorption and Dispersion 9.4.1 Electromagnetic Waves in Conductors, 9.4.2 Reflection at a Conducting Surface 9.4.3 The Frequency Dependence of Permittivity 9.5 Guided Waves 9.5.1 Wave Guides 9.5.2 TE Waves in a Rectangular Wave Guide 9.5.3 The Coaxial Transmission Line 14 Feb 2017 Chapter 9: Electromagnetic Waves
2
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension Traveling wave 9.1.1 The Wave Equation How to describe a wave that propagates with a fixed shape at constant speed mathematically? Let ๐ ๐ง,๐ก represent the displacement of the string at the point z, at time t. ๐ ๐ง, 0 โก๐ ๐ง ๐ ๐ง,๐ก =๐ ๐งโ๐ฃ๐ก,0 =๐(๐งโ๐ฃ๐ก) The displacement at point ๐ง, at the later time ๐ก, is the same as the displacement a distance ๐ฃ๐ก to the left (at ๐ง โ ๐ฃ ๐ก), back at time t = 0: Any function ๐ ๐ง,๐ก that depends only on ๐งโ๐ฃ๐ก represents a wave of fixed shape traveling in the ๐ง direction at constant speed ๐ฃ. ๐ 1 ๐ง,๐ก =๐ด ๐ โ๐ ๐งโ๐ฃ๐ก 2 ๐ 2 ๐ง,๐ก =๐ด sin[๐ ๐งโ๐ฃ๐ก ] ๐ 3 ๐ง,๐ก = ๐ด ๐ ๐งโ๐ฃ๐ก 2 +1 ๐ 4 ๐ง,๐ก =๐ด ๐ โ๐ ๐ ๐ง 2 โ๐ฃ๐ก 2 ๐ 5 ๐ง,๐ก =๐ด sin ๐๐ง cos ๐๐ฃ๐ก 2 represent travelling wave at constant speed v. do not represent travelling wave at constant speed v. A and b are constants. 14 Feb 2017 Chapter 9: Electromagnetic Waves
3
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension The wave equation 9.1.1 The Wave Equation Why does a stretched string support wave motion? The net transverse force on the segment A string under tension ๐ ฮ๐น=๐ sin ๐โฒ โ๐ sin ๐ Assuming these angles are small, the sine can be replaced by the tangent: ฮ๐นโ
๐ tan ๐ โฒ โ tan ๐ =๐ ๐๐ ๐๐ง โ ๐ง+ฮ๐ง โ ๐๐ ๐๐ง โ ๐ง โ
๐ ๐ 2 ๐ ๐ ๐ง 2 ฮ๐ง Newton's second law says ฮ๐น=๐๐=๐(ฮ๐ง) ๐ 2 ๐ ๐ ๐ก 2 ๐ is the mass per unit length ๐ ๐ 2 ๐ ๐ ๐ง 2 ฮ๐ง=๐(ฮ๐ง) ๐ 2 ๐ ๐ ๐ก 2 ๐ฃ= ๐ ๐ ๐ 2 ๐ ๐ ๐ง 2 = ๐ ๐ ๐ 2 ๐ ๐ ๐ก 2 ๐ 2 ๐ ๐ ๐ง 2 = 1 ๐ฃ 2 ๐ 2 ๐ ๐ ๐ก 2 The wave equation 14 Feb 2017 Chapter 9: Electromagnetic Waves
4
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension The general solution 9.1.1 The Wave Equation The wave equation ๐ 2 ๐ ๐ ๐ง 2 = 1 ๐ฃ 2 ๐ 2 ๐ ๐ ๐ก 2 admits as solutions all functions of the form ๐ ๐ง,๐ก =๐(๐งโ๐ฃ๐ก) ๐ขโก๐งโ๐ฃ๐ก ๐๐ ๐๐ง = ๐๐ ๐๐ข ๐๐ข ๐๐ง = ๐๐ ๐๐ข ๐๐ ๐๐ก = ๐๐ ๐๐ข ๐๐ข ๐๐ก =โ๐ฃ ๐๐ ๐๐ข ๐ 2 ๐ ๐ ๐ง 2 = ๐ ๐๐ง ๐๐ ๐๐ข = ๐ 2 ๐ ๐ ๐ข 2 ๐๐ข ๐๐ง = ๐ 2 ๐ ๐ ๐ข 2 ๐ 2 ๐ ๐ ๐ก 2 =โ๐ฃ ๐ ๐๐ก ๐๐ ๐๐ข =โ๐ฃ ๐ 2 ๐ ๐ ๐ข 2 ๐๐ข ๐๐ก = ๐ฃ 2 ๐ 2 ๐ ๐ ๐ข 2 ๐ 2 ๐ ๐ ๐ข 2 = ๐ 2 ๐ ๐ ๐ง 2 = 1 ๐ฃ 2 ๐ 2 ๐ ๐ ๐ก 2 The wave equation involves the square of ๐ฃ, so ๐ ๐ง,๐ก =โ(๐ง+๐ฃ๐ก) is another class of solutions. The most general solution to the wave equation is the sum of a wave to the right and a wave to the left: ๐ ๐ง,๐ก =๐ ๐งโ๐ฃ๐ก +โ(๐ง+๐ฃ๐ก) The wave equation is linear: The sum of any two solutions is itself a solution. 14 Feb 2017 Chapter 9: Electromagnetic Waves
5
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension Formula 9.1.2 Sinusoidal Waves ๐ ๐ง,๐ก =๐ด cos [๐ ๐งโ๐ฃ๐ก +๐ฟ] Phase constant Amplitude Phase Angular wave number At ๐ง=๐ฃ๐กโ ๐ฟ ๐ , the phase is zero; If ๐ฟ=0, the central maximum passes the origin at time ๐ก=0; ๐ฟ ๐ is the distance by which the central maximum (and therefore the entire wave) is "delayed." The wavelength ๐= 2๐ ๐ At any fixed point z, the string vibrates up and down, undergoing one full cycle in a period ๐= 2๐ ๐๐ฃ . The frequency ๐ (number of oscillations per unit time) is ๐= 1 ๐ = ๐๐ฃ 2๐ = ๐ฃ ๐ The angular frequency ๐=2๐๐=๐๐ฃ ๐ ๐ง,๐ก =๐ด cos (๐๐งโ๐๐ก+๐ฟ) traveling to the right ๐ ๐ง,๐ก =๐ด cos (๐๐ง+๐๐กโ๐ฟ) traveling to the left ๐ ๐ง,๐ก =๐ด cos (โ๐๐งโ๐๐ก+๐ฟ) traveling to the left we could simply switch the sign of k to produce a wave with the same amplitude, phase constant, frequency, and wavelength, traveling in the opposite direction. 14 Feb 2017 Chapter 9: Electromagnetic Waves
6
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension Euler's formula 9.1.2 Sinusoidal Waves ๐ ๐๐ = cos ๐+๐ sin ๐ Euler's formula ๐โก โ1 ๐ ๐ง,๐ก =๐ด cos [๐ ๐งโ๐ฃ๐ก +๐ฟ] ๐ ๐ง,๐ก =๐
๐[๐ด ๐ i ๐๐งโ๐๐ก+๐ฟ ] ๐
๐ ๐ denotes the real part of the complex number ๐. The complex wave function ๐ ๐ง,๐ก = ๐ด ๐ i ๐๐งโ๐๐ก ๐ด โก๐ด ๐ i๐ฟ The complex amplitude The actual wave function is the real part of ๐ ๐ ๐ง,๐ก =๐
๐[ ๐ ๐ง,๐ก ] The advantage of the complex notation is that exponentials are much easier to manipulate than sines and cosines. 14 Feb 2017 Chapter 9: Electromagnetic Waves
7
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension Example 9.1.2 Sinusoidal Waves Find the amplitude and phase constant of the wave resulted from combing two sinusoidal waves of the same frequency and wave number. ๐ 3 = ๐ 1 + ๐ 2 =Re f 1 +Re f 2 =Re f f 2 =Re f 3 f 3 = ๐ด 1 ๐ i ๐๐งโ๐๐ก + ๐ด 2 ๐ i ๐๐งโ๐๐ก = ๐ด 3 ๐ i ๐๐งโ๐๐ก ๐ด 3 = ๐ด ๐ด 2 ๐ด 3 ๐ i ๐ฟ 3 = ๐ด 1 ๐ i ๐ฟ 1 + ๐ด 2 ๐ i ๐ฟ 2 ๐ด 3 ๐ i ๐ฟ 3 = ๐ด 1 cos ๐ฟ 1 +๐ ๐ด 1 sin ๐ฟ 1 + ๐ด 2 cos ๐ฟ 2 +๐ ๐ด 2 sin ๐ฟ 2 ๐ด 3 ๐ i ๐ฟ 3 = ๐ด 1 cos ๐ฟ 1 + ๐ด 2 cos ๐ฟ 2 +๐( ๐ด 1 sin ๐ฟ 1 + ๐ด 2 sin ๐ฟ 2 ) = ๐ด ๐ด ๐ด 1 ๐ด 2 ( cos ๐ฟ 1 cos ๐ฟ 2 + sin ๐ฟ 1 sin ๐ฟ 2 ) ๐ด 3 = ๐ด 1 cos ๐ฟ 1 + ๐ด 2 cos ๐ฟ ๐ด 1 sin ๐ฟ 1 + ๐ด 2 sin ๐ฟ ๐ด 3 = ๐ด ๐ด ๐ด 1 ๐ด 2 cos ( ๐ฟ 1 โ ๐ฟ 2 ) tan ๐ฟ 3 = ๐ด 3 sin ๐ฟ 3 ๐ด 3 cos ๐ฟ 3 ๐ฟ 3 = tan โ1 ๐ด 1 sin ๐ฟ 1 + ๐ด 2 sin ๐ฟ 2 ๐ด 1 cos ๐ฟ 1 + ๐ด 2 cos ๐ฟ 2 14 Feb 2017 Chapter 9: Electromagnetic Waves
8
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension Linear combinations of sinusoidal waves 9.1.2 Sinusoidal Waves Any wave can be expressed as a linear combination of sinusoidal ones: ๐ is a function of ๐. ๐ runs through negative values in order to include waves going in both directions. ๐ (๐ง,๐ก)= โโ โ ๐ด (๐) ๐ i ๐๐งโ๐๐ก ๐๐ The formula for ๐ด (๐), in terms of the initial conditions ๐(๐ง, 0) and ๐ (๐ง, 0), can be obtained from the theory of Fourier transforms. Therefore if you know how sinusoidal waves behave, you know in principle how any wave behaves. So from now on we shall confine our attention to sinusoidal waves. 14 Feb 2017 Chapter 9: Electromagnetic Waves
9
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension Two tied strings 9.1.3 Boundary Conditions: Reflection and Transmission Suppose that a string is tied onto a second string. The tension ๐ is the same for both stings. The mass per unit length ๐ is not the same. The wave velocities ๐ฃ 1 = ๐ ๐ 1 and ๐ฃ 2 = ๐ ๐ 2 are different. reflected pulse transmitted pulse Incident pulse Knot ๐ง=0 knot Assume the incident wave f ๐ผ (๐ง, ๐ก) is a sinusoidal oscillation that extends all the way back to ๐ง=โโ, and has been doing so for all time. Assume the same goes for f ๐
and f ๐ (except f ๐ , extends to ๐ง=+โ). The incident wave ๐ ๐ผ (๐ง,๐ก)= ๐ด ๐ผ ๐ i ๐ 1 ๐งโ๐๐ก (๐ง<0) All parts of the string are oscillating at the same frequency ๐ (a frequency determined by the person at ๐ง=โโ, who is shaking the string in the first place). The reflected wave ๐ ๐
(๐ง,๐ก)= ๐ด ๐
๐ i โ๐ 1 ๐งโ๐๐ก (๐ง<0) The transmitted wave ๐ ๐ (๐ง,๐ก)= ๐ด ๐ ๐ i ๐ 2 ๐งโ๐๐ก (๐ง>0) 14 Feb 2017 Chapter 9: Electromagnetic Waves
10
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension Boundary conditions 9.1.3 Boundary Conditions: Reflection and Transmission With incident and reflected waves of infinite extent traveling on the same piece of string, it's going to be hard to tell them apart. ๐ (๐ง,๐ก)= ๐ด ๐ผ ๐ i ๐ 1 ๐งโ๐๐ก + ๐ด ๐
๐ i โ๐ 1 ๐งโ๐๐ก , ๐ง<0 & ๐ด ๐ ๐ i ๐ 2 ๐งโ๐๐ก , ๐ง>0 The wavelengths and wave numbers are different. ๐ 1 ๐ 2 = ๐ 2 ๐ 1 = ๐ฃ 1 ๐ฃ 2 ๐ (๐ง,๐ก)= is continuous at ๐ง = 0: ๐ 0 + ,๐ก =๐ 0 โ ,๐ก Else there would be a break between the two strings. If the knot itself is of negligible mass, then the derivative of ๐ must also be continuous: ๐๐ ๐๐ง โ 0 โ = ๐๐ ๐๐ง โ 0 + Otherwise there would be a net force on the knot, and therefore an infinite acceleration. Since the imaginary part of ๐ differs from the real part only in the replacement of cosine ๐ ,๐ก = ๐ 0 โ ,๐ก โ ๐ด ๐ผ + ๐ด ๐
= ๐ด ๐ ๐ ๐ ๐๐ง โ 0 โ = ๐ ๐ ๐๐ง โ 0 + โ ๐ 1 ๐ด ๐ผ โ ๐ด ๐
= k 2 ๐ด ๐ ๐ด ๐
=( ๐ 1 โ๐ 2 ๐ 1 + ๐ 2 ) ๐ด ๐ผ ๐ด ๐
=( ๐ฃ 2 โ๐ฃ 1 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ด ๐
๐ ๐ ๐ฟ ๐
=( ๐ฃ 2 โ๐ฃ 1 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐ผ ๐ด ๐ =( 2๐ 1 ๐ 1 + ๐ 2 ) ๐ด ๐ผ ๐ด ๐ =( 2๐ฃ 2 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ด ๐ ๐ ๐ ๐ฟ ๐ =( 2๐ฃ 2 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐ผ 14 Feb 2017 Chapter 9: Electromagnetic Waves
11
Phase of reflected waves
9.1 Waves in One Dimension Phase of reflected waves 9.1.3 Boundary Conditions: Reflection and Transmission ๐ฃ 2 <๐ฃ 1 ๐ฃ 2 >๐ฃ 1 ๐ด ๐
๐ ๐ ๐ฟ ๐
=( ๐ฃ 2 โ๐ฃ 1 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐ผ ๐ฃ= ๐ ๐ The second string is heavier than the first The second string is lighter than the first ๐ด ๐
๐ ๐ ๐ฟ ๐
=( ๐ฃ 2 โ๐ฃ 1 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐ผ ๐ด ๐
๐ ๐ ๐ฟ ๐
=( ๐ฃ 2 โ๐ฃ 1 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐ผ <0 Amplitudes always positives ๐ด ๐
๐ ๐ ๐ฟ ๐
=โ( ๐ฃ 1 โ๐ฃ 2 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐ผ ๐ด ๐
= ( ๐ฃ 1 โ๐ฃ 2 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ด ๐
=( ๐ฃ 2 โ๐ฃ 1 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐
=โ ๐ ๐ ๐ฟ ๐ผ ๐ ๐ ๐ฟ ๐
= ๐ ๐ ๐ฟ ๐ผ ๐ ๐ ๐ฟ ๐
= ๐ ๐๐ ๐ ๐ ๐ฟ ๐ผ ๐ฟ ๐
= ๐ฟ ๐ผ ๐ฟ ๐
= ๐ฟ ๐ผ +๐ The reflected wave is out of phase by 180ยฐ. cos โ ๐ 1 ๐งโ๐๐ก+ ๐ฟ ๐ผ +๐ =โ cos โ ๐ 1 ๐งโ๐๐ก+ ๐ฟ ๐ผ The reflected wave is inverted. ๐ฃ 2 <๐ฃ 1 or ๐ฃ 2 >๐ฃ 1 ๐ด ๐ ๐ ๐ ๐ฟ ๐ =( 2๐ฃ 2 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐ผ ๐ด ๐ =( 2๐ฃ 2 ๐ฃ 2 + ๐ฃ 1 ) ๐ด ๐ผ ๐ ๐ ๐ฟ ๐ = ๐ ๐ ๐ฟ ๐ผ ๐ฟ ๐ = ๐ฟ ๐ผ If the second string is infinitely massive or, if the first string is simply fixed at the end ๐ด ๐
= ๐ด ๐ผ There is no transmitted wave-all of it reflects back. ๐ด ๐ =0 14 Feb 2017 Chapter 9: Electromagnetic Waves
12
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension Transverse waves 9.1.4 Polarization Transverse waves Wave on a string The displacement is perpendicular to the direction of propagation Longitudinal waves The displacement is along the direction of propagation Slinky compression waves Electromagnetic waves are transverse. For transverse waves there are two dimensions perpendicular to any given line of propagation. Transverse waves occur in two independent states of polarization: The polarization vector ๐ง defines the plane of vibration. Because the waves are transverse, ๐ง is perpendicular to the direction of propagation: ๐ง โ ๐ณ =0 Vertical polarization In terms of the polarization angle ๐, ๐ง = cos ๐ ๐ฑ + sin ๐ ๐ฒ Horizontal polarization ๐ (๐ง,๐ก)= ๐ด cos ๐ ๐ i ๐๐งโ๐๐ก ๐ฑ + ๐ด sin ๐ ๐ i โ๐ 1 ๐งโ๐๐ก ๐ฒ 14 Feb 2017 Chapter 9: Electromagnetic Waves
13
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum The Wave Equation 9.2.1 The Wave Equation for E and B ๐ร๐=โ ๐ ๐๐ก ๐ In regions of space where there is no charge or current, Maxwell's equations read ๐โ๐=0 ๐ร๐= ๐ 0 ๐ 0 ๐ ๐๐ก ๐ ๐โ๐=0 ๐ร(๐ร๐)=๐รโ ๐ ๐๐ก ๐ ๐ร(๐ร๐)=๐ร ๐ 0 ๐ 0 ๐ ๐๐ก ๐ ๐ ๐โ๐ โ ๐ป 2 ๐=โ ๐ ๐๐ก ๐ร๐ ๐ ๐โ๐ โ ๐ป 2 ๐ = ๐ 0 ๐ 0 ๐ ๐๐ก ๐ร๐ ๐ป 2 ๐= ๐ 0 ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ ๐ป 2 ๐ = ๐ 0 ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ ๐ป 2 ๐= 1 ๐ฃ 2 ๐ 2 ๐ ๐ ๐ก 2 In vacuum, each Cartesian component of ๐ and ๐ satisfies the three-dimensional wave equation, ๐ป 2 ๐ธ ๐ฅ = ๐ 0 ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ธ ๐ฅ ๐ฃ= 1 ๐ 0 ๐ 0 =3.00ร 10 8 ๐/๐ ๐ป 2 ๐ธ ๐ฆ = ๐ 0 ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ธ ๐ฆ The velocity of light, c. ๐ป 2 ๐ธ ๐ง = ๐ 0 ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ธ ๐ง 14 Feb 2017 Chapter 9: Electromagnetic Waves
14
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum The electromagnetic spectrum 9.2.2 Monochromatic Plane Waves We confine our attention to sinusoidal waves of frequency ๐. Since different frequencies in the visible range correspond to different colors, such waves are called monochromatic. 14 Feb 2017 Chapter 9: Electromagnetic Waves
15
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum Transverse waves 9.2.2 Monochromatic Plane Waves Suppose that the sinusoidal waves are traveling in the z direction and have no ๐ฅ or ๐ฆ dependence. ๐ ๐ง,๐ก = ๐ ๐ ๐ i ๐๐งโ๐๐ก ๐ ๐ง,๐ก = ๐ ๐ ๐ i ๐๐งโ๐๐ก These are called plane waves because the fields are uniform over every plane perpendicular to the direction of propagation. ๐ธ ๐ฅ ๐ง,๐ก = ๐ธ 0๐ฅ ๐ i ๐๐งโ๐๐ก ๐ธ ๐ฆ ๐ง,๐ก = ๐ธ 0๐ฆ ๐ i ๐๐งโ๐๐ก ๐ธ ๐ง ๐ง,๐ก = ๐ธ 0๐ง ๐ i ๐๐งโ๐๐ก 14 Feb 2017 Chapter 9: Electromagnetic Waves
16
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum Transverse waves 9.2.2 Monochromatic Plane Waves ๐ต ๐ฅ ๐ง,๐ก = ๐ต 0๐ฅ ๐ i ๐๐งโ๐๐ก ๐ธ ๐ฅ ๐ง,๐ก = ๐ธ 0๐ฅ ๐ i ๐๐งโ๐๐ก ๐ธ ๐ฆ ๐ง,๐ก = ๐ธ 0๐ฆ ๐ i ๐๐งโ๐๐ก ๐ต ๐ฆ ๐ง,๐ก = ๐ต 0๐ฆ ๐ i ๐๐งโ๐๐ก ๐ต ๐ง ๐ง,๐ก = ๐ต 0๐ง ๐ i ๐๐งโ๐๐ก ๐ธ ๐ง ๐ง,๐ก = ๐ธ 0๐ง ๐ i ๐๐งโ๐๐ก Maxwell's equations impose extra constraints on ๐ ๐ and ๐ ๐ ๐โ๐=0 โ ( ๐ธ 0 ) ๐ง =0 Electromagnetic waves are transverse: the electric and magnetic fields are perpendicular to the direction of propagation. ๐โ๐=0 โ ( ๐ต 0 ) ๐ง =0 ๐ฑ ๐ฒ ๐ณ ๐ ๐๐ฅ ๐ ๐๐ฆ ๐ ๐๐ง ๐ธ ๐ฅ ๐ธ ๐ฆ 0 โ๐ ( ๐ธ 0 ) ๐ฆ = ๐ ( ๐ต 0 ) ๐ฅ ๐ฑ ๐ฒ ๐ณ ๐ธ ๐ฅ ๐ธ ๐ฆ 0 ๐ร๐=โ ๐ ๐๐ก ๐ โ ๐ ( ๐ธ 0 ) ๐ฅ = ๐ ( ๐ต 0 ) ๐ฆ ๐ ๐ = ๐ ๐ ( ๐ณ ร ๐ ๐ ) E and B are in phase and mutually perpendicular; their (real) amplitudes are related by ๐ต 0 = ๐ ๐ ๐ธ 0 = 1 ๐ ๐ธ 0 14 Feb 2017 Chapter 9: Electromagnetic Waves
17
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum Example 9.2.2 Monochromatic Plane Waves If ๐ points in the x direction, then ๐ points in the y direction. ๐ ๐ = ๐ ๐ ( ๐ณ ร ๐ ๐ ) ๐ ๐ง,๐ก = ๐ธ 0 ๐ i ๐๐งโ๐๐ก ๐ฑ ๐ ๐ง,๐ก = ๐ต 0 ๐ i ๐๐งโ๐๐ก ๐ฒ ๐ ๐ซ,๐ก = ๐ธ 0 cos ๐๐งโ๐๐ก+๐ฟ ๐ฑ ๐ ๐ซ,๐ก = 1 ๐ ๐ธ 0 cos ๐๐งโ๐๐ก+๐ฟ ๐ฒ 14 Feb 2017 Chapter 9: Electromagnetic Waves
18
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum Propagation vector 9.2.2 Monochromatic Plane Waves The propagation (or wave) vector, ๐ค, points in the direction of propagation and its magnitude is the wave number ๐. The scalar product ๐คโ๐ซ is the generalization of ๐๐ง ๐ง is the polarization vector. Because ๐ is transverse. ๐ง โ ๐ค =0 ๐ ๐ซ,๐ก = ๐ธ 0 ๐ i ๐คโ๐ซโ๐๐ก ๐ง ๐ ๐ซ,๐ก = 1 ๐ ๐ธ 0 ๐ i ๐คโ๐ซโ๐๐ก ( ๐ค ร ๐ง ) = 1 ๐ ( ๐ค ร ๐ ) The actual (real) electric and magnetic fields in a monochromatic plane wave with propagation vector ๐ค and polarization ๐ง are ๐ ๐ซ,๐ก = ๐ธ 0 cos ๐คโ๐ซโ๐๐ก+๐ฟ ๐ง ๐ ๐ซ,๐ก = 1 ๐ ๐ธ 0 cos ๐คโ๐ซโ๐๐ก+๐ฟ ( ๐ค ร ๐ง ) 14 Feb 2017 Chapter 9: Electromagnetic Waves
19
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum Poynting vector 9.2.3 Energy and Momentum in Electromagnetic Waves The energy per unit volume stored in electromagnetic fields is ๐ข= 1 2 ( ๐ 0 ๐ธ ๐ 0 ๐ต 2 ) So the electric and magnetic contributions are equal. 1 ๐ 0 ๐ต 2 = 1 ๐ ๐ 2 ๐ธ 2 = 1 ๐ 0 ๐ 0 ๐ 0 ๐ธ 2 = ๐ 0 ๐ธ 2 For a monochromatic plane wave As the wave travels, it carries this energy along with it. ๐ข= ๐ 0 ๐ธ 2 = ๐ 0 ๐ธ cos 2 ๐๐งโ๐๐ก+๐ฟ ๐= 1 ๐ 0 (๐ร๐) The energy flux density (energy per unit area, per unit time) transported by the fields is given by the Poynting vector For monochromatic plane waves propagating in the ๐ง direction ๐= 1 ๐ ๐ ๐ธ cos 2 ๐๐งโ๐๐ก+๐ฟ ๐ณ ๐ 2 = 1 ๐ 0 ๐ 0 ๐ = ๐ 0 ๐ ๐ธ cos 2 ๐๐งโ๐๐ก+๐ฟ ๐ณ ๐=๐๐ข ๐ณ = Energy density ร velocity of the wave In a time ฮ๐ก, a length ๐ฮ๐ก passes through area ๐ด, carrying with it an energy ๐ข๐ด๐ฮ๐ก. The energy per unit time, per unit area, transported by the wave is therefore ๐ข๐. 14 Feb 2017 Chapter 9: Electromagnetic Waves
20
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum Momentum 9.2.3 Energy and Momentum in Electromagnetic Waves Electromagnetic fields carry momentum. ๐น= ๐ 0 ๐ 0 ๐= 1 ๐ 2 ๐ The momentum density stored in the fields is For monochromatic plane waves ๐ = ๐ 0 ๐ ๐ธ cos 2 ๐๐งโ๐๐ก+๐ฟ ๐ณ ๐น= ๐ 0 ๐ ๐ธ cos 2 ๐๐งโ๐๐ก+๐ฟ ๐ณ ๐ข= ๐ 0 ๐ธ cos 2 ๐๐งโ๐๐ก+๐ฟ ๐น= 1 ๐ ๐ข ๐ณ In the case of light, the wavelength is so short (~ 5ร 10 โ7 ๐), and the period so brief (~ 10 โ15 s), that any macroscopic measurement will encompass many cycles. ๐ฅ denotes the time average of ๐ฅ over a complete cycle. cos 2 (๐๐งโ 2๐๐ก ๐ +๐ฟ) = 1 ๐ 0 ๐ cos 2 (๐๐งโ 2๐๐ก ๐ +๐ฟ) ๐๐ก= 1 2 We are interested only in the average value. ๐ข = 1 2 ๐ 0 ๐ธ 0 2 Another way of finding cos 2 (๐) ๐ = 1 2 ๐ 0 ๐ ๐ธ ๐ณ cos 2 ๐ + sin 2 (๐) =1 cos 2 (๐) = sin 2 (๐) = 1 2 ๐น = 1 2๐ ๐ 0 ๐ธ ๐ณ 14 Feb 2017 Chapter 9: Electromagnetic Waves
21
Chapter 9: Electromagnetic Waves
9.2 Electromagnetic Waves in Vacuum Intensity 9.2.3 Energy and Momentum in Electromagnetic Waves The intensity is the average power per unit area transported by an electromagnetic wave ๐ผโก S = 1 2 ๐ 0 ๐ ๐ธ 0 2 When light falls on a perfect absorber it delivers its momentum to the surface. In a time ฮ๐ก the momentum transfer is ฮ๐ฉ= ๐น ๐ด๐ฮ๐ก, so the radiation pressure (average force per unit area) is ๐น = 1 2๐ ๐ 0 ๐ธ ๐ณ ๐= 1 ๐ด ฮp ฮt = 1 2 ๐ 0 ๐ธ 0 2 = ๐ผ ๐ On a perfect reflector the pressure is twice as great, because the momentum switches direction, instead of simply being absorbed. We can account for this pressure qualitatively, as follows: The electric field drives charges in the ๐ฅ direction, and the magnetic field then exerts on them a force (๐ ๐ฏร ๐) in the ๐ง direction. The net force on all the charges in the surface produces the pressure. 14 Feb 2017 Chapter 9: Electromagnetic Waves
22
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Maxwellโs equations 9.3.1 Propagation in Linear Media ๐ร๐=โ ๐ ๐๐ก ๐ Inside matter and in regions where there is no free charge or free current, Maxwell's equations ๐โ๐=0 ๐ร๐= ๐ ๐๐ก ๐ ๐โ๐=0 ๐= 1 ๐ ๐ If the medium is linear , ๐=๐๐ In homogeneous medium ๐ and ๐ do not vary from point to point ๐ร๐=โ ๐ ๐๐ก ๐ ๐โ๐=0 differ from the vacuum analogs only in the replacement of ๐ 0 ๐ 0 by ๐๐ ๐ร๐=๐๐ ๐ ๐๐ก ๐ ๐โ๐=0 Electromagnetic waves propagate through a linear homogeneous medium at a speed ๐ฃ= 1 ๐๐ = ๐ ๐ ๐โก ๐๐ ๐ 0 ๐ 0 ๐ is the index of refraction of the material For most materials, ๐ is very close to ๐ 0 , so ๐โ
๐ ๐ where ๐ ๐ is the dielectric constant Since ๐ ๐ is almost always greater than 1, light travels more slowly through matter. 14 Feb 2017 Chapter 9: Electromagnetic Waves
23
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Boundary conditions 9.3.1 Propagation in Linear Media ๐ 0 โ๐ ๐ 0 โ๐ ๐โ๐ฃ= ๐ ๐ = ๐ ๐๐ All of our previous results carry over, with the simple transcription ๐ข= 1 2 (๐ ๐ธ ๐ ๐ต 2 ) The energy density ๐= 1 ๐ (๐ร๐) The Poynting vector Boundary conditions When a wave passes from one transparent medium into another ๐=๐๐ฃ ๐ต= 1 ๐ฃ ๐ธ ๐ผ= 1 2 ๐๐ฃ ๐ธ 0 2 For monochromatic plane waves ๐ 1 ๐ธ 1 โฅ = ๐ 2 ๐ธ 2 โฅ ๐ 1 โฅ = ๐ 2 โฅ 1 ๐ 1 ๐ 1 โฅ = 1 ๐ 2 ๐ 2 โฅ ๐ต 1 โฅ = ๐ต 2 โฅ 14 Feb 2017 Chapter 9: Electromagnetic Waves
24
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Boundary conditions 9.3.2 Reflection and Transmission at Normal Incidence Suppose the ๐ฅ๐ฆ plane forms the boundary between two linear media. A plane wave, traveling in the z direction and polarized in the x direction, approaches the interface from the left ๐ ๐ผ ๐ง,๐ก = ๐ธ 0๐ผ ๐ i ๐ 1 ๐งโ๐๐ก ๐ฑ ๐ ๐ผ ๐ง,๐ก = 1 ๐ฃ 1 ๐ธ 0๐ผ ๐ i ๐ 1 ๐งโ๐๐ก ๐ฒ It gives rise to a reflected wave travels back to the left in medium ๐ ๐
๐ง,๐ก = ๐ธ 0๐
๐ i โ ๐ 1 ๐งโ๐๐ก ๐ฑ ๐ 1 โฅ = ๐ 2 โฅ ๐ธ 0๐ผ + ๐ธ 0๐
= ๐ธ 0๐ ๐ ๐
๐ง,๐ก = โ 1 ๐ฃ 1 ๐ธ 0๐
๐ i โ ๐ 1 ๐งโ๐๐ก ๐ฒ 1 ๐ 1 ( 1 ๐ฃ 1 ๐ธ 0๐ผ โ 1 ๐ฃ 1 ๐ธ 0๐
)= 1 ๐ ๐ฃ 2 ๐ธ 0๐ and a transmitted wave 1 ๐ 1 ๐ 1 โฅ = 1 ๐ 2 ๐ 2 โฅ ๐ ๐ ๐ง,๐ก = ๐ธ 0๐ ๐ i ๐ 2 ๐งโ๐๐ก ๐ฑ ๐ธ 0๐ผ โ ๐ธ 0๐
= ๐ 1 ๐ 2 ๐ฃ 1 ๐ฃ 2 ๐ธ 0๐ ๐ ๐ ๐ง,๐ก = 1 ๐ฃ 2 ๐ธ 0๐ ๐ i ๐ 2 ๐งโ๐๐ก ๐ฒ 14 Feb 2017 Chapter 9: Electromagnetic Waves
25
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Reflection and transmission amplitudes 9.3.2 Reflection and Transmission at Normal Incidence ๐ธ 0๐ผ + ๐ธ 0๐
= ๐ธ 0๐ ๐ธ 0๐ผ โ ๐ธ 0๐
= ๐ 1 ๐ 2 ๐ฃ 1 ๐ฃ 2 ๐ธ 0๐ ๐ฝโก ๐ 1 ๐ 2 ๐ฃ 1 ๐ฃ 2 =๐ฝ ๐ธ 0๐ ๐ธ 0๐
= 1โ๐ฝ 1+๐ฝ ๐ธ 0๐ผ ๐ธ 0๐ = 2 1+๐ฝ ๐ธ 0๐ผ If the permittivities ๐ are close to their values in vacuum (for most media), ๐ฝ= ๐ฃ 1 ๐ฃ 2 ๐ฃ= 1 ๐๐ = ๐ ๐ ๐ธ 0๐
= ๐ฃ 2 โ ๐ฃ 1 ๐ฃ 2 + ๐ฃ 1 ๐ธ 0๐ผ ๐ธ 0๐
=| ๐ฃ 2 โ ๐ฃ 1 ๐ฃ 2 + ๐ฃ 1 | ๐ธ 0๐ผ ๐ธ 0๐
=| ๐ 1 โ ๐ 2 ๐ 1 + ๐ 2 | ๐ธ 0๐ผ Identical to the ones for waves on a string ๐ธ 0๐ = 2 ๐ฃ 2 ๐ฃ 2 + ๐ฃ 1 ๐ธ 0๐ผ ๐ธ 0๐ = 2 ๐ฃ 2 ๐ฃ 2 + ๐ฃ 1 ๐ธ 0๐ผ ๐ธ 0๐ = 2 ๐ 1 ๐ 1 + ๐ 2 ๐ธ 0๐ผ 14 Feb 2017 Chapter 9: Electromagnetic Waves
26
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Reflection and transmission coefficients 9.3.2 Reflection and Transmission at Normal Incidence ๐ 1 โ ๐ 2 โ ๐ 0 ๐โก ๐๐ ๐ 0 ๐ 0 ๐ฃ= 1 ๐๐ = ๐ ๐ ๐ธ 0๐
=| ๐ 1 โ ๐ 2 ๐ 1 + ๐ 2 | ๐ธ 0๐ผ ๐ธ 0๐ = 2 ๐ 1 ๐ 1 + ๐ 2 ๐ธ 0๐ผ What fraction of the incident energy is reflected, and what fraction is transmitted? ๐ผ = 1 2 ๐๐ฃ ๐ธ 0 2 The intensity (average power per unit area) is If ๐ 1 = ๐ 2 = ๐ 0 , then the ratio of the reflected intensity to the incident intensity is ๐
โก ๐ผ ๐
๐ผ ๐ผ = ๐ธ 0๐
๐ธ 0๐ผ 2 = ๐ 1 โ ๐ 2 ๐ 1 + ๐ ๐
is the reflection coefficient the ratio of the transmitted intensity to the incident intensity is ๐ ๐๐๐ =1 ๐โก ๐ผ ๐ ๐ผ ๐ผ = ๐ 2 ๐ฃ 2 ๐ 1 ๐ฃ ๐ธ 0๐ ๐ธ 0๐ผ 2 = 4 ๐ 1 ๐ ๐ 1 + ๐ 2 2 ๐ ๐๐๐๐ ๐ =1.5 ๐ is the transmission coefficient When light passes from air into glass, R = 0.04 T = 0.96 Conservation of energy, of course, requires ๐
+๐ =1 14 Feb 2017 Chapter 9: Electromagnetic Waves
27
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Wave numbers 9.3.3 Reflection and Transmission at Oblique Incidence Suppose a monochromatic plane wave approaches from the left ๐ ๐ผ ๐ซ,๐ก = ๐ 0๐ผ ๐ i ๐ค ๐ผ โ๐ซโ๐๐ก ๐ ๐ผ ๐ซ,๐ก = 1 ๐ฃ 1 ( ๐ค ๐ผ ร ๐ ๐ผ ) giving rise to a reflected wave ๐ ๐
๐ซ,๐ก = ๐ 0๐
๐ i ๐ค ๐
โ๐ซโ๐๐ก ๐ ๐
๐ซ,๐ก = 1 ๐ฃ ๐ค ๐
ร ๐ ๐
All three waves have the same frequency ๐ that is determined once and for all at the source and a transmitted wave ๐ ๐ ๐ซ,๐ก = ๐ 0๐ ๐ i ๐ค ๐ โ๐ซโ๐๐ก ๐ ๐ ๐ซ,๐ก = 1 ๐ฃ ๐ค ๐ ร ๐ ๐ The three wave numbers are related ๐ ๐ผ ๐ฃ 1 = ๐ ๐
๐ฃ 1 = ๐ ๐ ๐ฃ 2 =๐ ๐ ๐ผ = ๐ ๐
= ๐ฃ 2 ๐ฃ 1 ๐ ๐ = ๐ 1 ๐ 2 ๐ ๐ 14 Feb 2017 Chapter 9: Electromagnetic Waves
28
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter At the boundary, phases are the same 9.3.3 Reflection and Transmission at Oblique Incidence The combined fields in medium (1), ๐ ๐ผ + ๐ ๐
and ๐ ๐ผ + ๐ ๐
, must be joined to the fields ๐ ๐ and ๐ ๐ in medium (2), using the boundary conditions. These all share the generic structure ๐ i ๐ค ๐ผ โ๐ซโ๐๐ก ๐ i ๐ค ๐
โ๐ซโ๐๐ก = ๐ i ๐ค ๐ โ๐ซโ๐๐ก notice is that the x, y, and t dependence is confined to the exponents. Because the boundary conditions must hold at all points on the plane, and for all times, these exponential factors must be equal. This is another way to show that the transmitted and reflected frequencies must match the incident one ๐ค ๐ผ โ๐ซโ๐๐ก= ๐ค ๐
โ๐ซโ๐๐ก= ๐ค ๐ โ๐ซโ๐๐ก When ๐ง=0 ๐ค ๐ผ โ๐ซ= ๐ค ๐
โ๐ซ= ๐ค ๐ โ๐ซ When ๐ง=0 ๐ฅ ๐ ๐ผ ๐ฅ +๐ฆ ๐ ๐ผ ๐ฆ =๐ฅ ๐ ๐
๐ฅ +๐ฆ ๐ ๐
๐ฆ =๐ฅ ๐ ๐ ๐ฅ +๐ฆ ๐ ๐ ๐ฆ for all ๐ฅ and all ๐ฆ. This can only hold if the components are separately equal, for if ๐ฅ=0, ๐ ๐ผ ๐ฆ = ๐ ๐
๐ฆ = ๐ ๐ ๐ฆ for if ๐ฆ=0, ๐ ๐ผ ๐ฅ = ๐ ๐
๐ฅ = ๐ ๐ ๐ฅ 14 Feb 2017 Chapter 9: Electromagnetic Waves
29
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Fundamental laws of geometrical optics 9.3.3 Reflection and Transmission at Oblique Incidence ๐ ๐ผ ๐ฆ = ๐ ๐
๐ฆ = ๐ ๐ ๐ฆ We may orient our axes so that ๐ค ๐ผ lies in the ๐ฅ๐ง plane. Thus ๐ ๐ผ ๐ฆ =0= ๐ ๐
๐ฆ = ๐ ๐ ๐ฆ Hence ๐ค ๐
and ๐ค ๐ must lie in the ๐ฅ๐ง plane. First Law: The incident, reflected, and transmitted wave vectors form a plane (called the plane of incidence), which also includes the normal to the surface(here, the z axis). ๐ ๐ผ ๐ฅ = ๐ ๐
๐ฅ = ๐ ๐ ๐ฅ ๐ ๐ผ the angle of incidence ๐ ๐
the angle of reflection ๐ ๐ the angle of transmission, or the angle of refraction ๐ ๐ผ sin ๐ ๐ผ = ๐ ๐
sin ๐ ๐
= ๐ ๐ sin ๐ ๐ Second Law: The angle of incidence is equal to the angle of reflection, The law of reflection. ๐ ๐ผ = ๐ ๐
All of them measured with respect to the normal sin ๐ ๐ sin ๐ ๐ผ = ๐ 1 ๐ 2 The law of refraction, or Snell's law. Third Law: All we used was โthe phases are same at the boundaryโ. Therefore, any other waves (water waves or sound waves) can be expected to obey the same "opticalโ laws when they pass from one medium into another. 14 Feb 2017 Chapter 9: Electromagnetic Waves
30
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter polarization parallel to the plane 9.3.3 Reflection and Transmission at Oblique Incidence ๐ฅ ๐ ๐
sin ๐ ๐ผ = sin ๐ ๐
๐ ๐
๐ 1 โ ๐ธ 0๐ผ + ๐ธ 0๐
= ๐ 2 โ ๐ธ 0๐ sin ๐ ๐ sin ๐ ๐ผ ๐ค ๐
๐ ๐ sin ๐ ๐ sin ๐ ๐ผ = ๐ฃ 2 ๐ฃ 1 ๐ ๐
๐ ๐ ๐ค ๐ ๐ธ 0๐ผ โ ๐ธ 0๐
= ๐ 2 ๐ 1 ๐ฃ 2 ๐ฃ 1 ๐ธ 0๐ ๐ ๐
๐ ๐ ๐ ๐ ๐ง ๐๐= 1 ๐ฃ 2 ๐ ๐ผ ๐ ๐ผ ๐ธ 0๐ผ โ ๐ธ 0๐
= ๐ 1 ๐ฃ 1 ๐ 2 ๐ฃ 2 ๐ธ 0๐ ๐ ๐ผ ๐ค ๐ผ ๐ ๐ผ 1 2 Suppose that the polarization of the incident wave is parallel to the plane of incidence (๐ฅ๐ง plane) Boundary conditions ๐ธ 0๐ผ โ ๐ธ 0๐
= ๐ 1 ๐ฃ 1 ๐ 2 ๐ฃ 2 ๐ธ 0๐ ๐ 1 ๐ธ 1 โฅ = ๐ 2 ๐ธ 2 โฅ ๐ ๐ 0๐ผ + ๐ 0๐
๐ง = ๐ ๐ 0๐ ๐ง ๐ 1 โ ๐ธ 0๐ผ sin ๐ ๐ผ + ๐ธ 0๐
sin ๐ ๐
= ๐ 2 โ ๐ธ 0๐ sin ๐ ๐ ๐ต 1 โฅ = ๐ต 2 โฅ ๐ 0๐ผ + ๐ 0๐
๐ง = ๐ 0๐ z 0+0=0 0+0=0 ๐ธ 0๐ผ + ๐ธ 0๐
= ๐ธ 0๐ cos ๐ ๐ cos ๐ ๐ผ ๐ 1 โฅ = ๐ 2 โฅ ๐ 0๐ผ + ๐ 0๐
๐ฅ,๐ฆ = ๐ 0๐ ๐ฅ,๐ฆ ๐ธ 0๐ผ cos ๐ ๐ผ + ๐ธ 0๐
cos ๐ ๐
= ๐ธ 0๐ cos ๐ ๐ 1 ๐ 1 ๐ 1 โฅ = 1 ๐ 2 ๐ 2 โฅ 1 ๐ ๐ 0๐ผ + ๐ 0๐
๐ฅ,๐ฆ = 1 ๐ ๐ 0๐ ๐ฅ,๐ฆ 1 ๐ 1 ๐ฃ ๐ธ 0๐ผ โ ๐ธ 0๐
= 1 ๐ 2 ๐ฃ 2 ๐ธ 0๐ ๐ธ 0๐ผ โ ๐ธ 0๐
= ๐ 1 ๐ฃ 1 ๐ 2 ๐ฃ 2 ๐ธ 0๐ ๐ฅ,๐ฆ represent pairs of equations, one for the x-component and one for the y-component. 14 Feb 2017 Chapter 9: Electromagnetic Waves
31
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Fresnel's equations 9.3.3 Reflection and Transmission at Oblique Incidence ๐ฅ ๐ ๐
๐ค ๐
๐ธ 0๐ผ โ ๐ธ 0๐
= ๐ 1 ๐ฃ 1 ๐ 2 ๐ฃ 2 ๐ธ 0๐ ๐ฝโก ๐ 1 ๐ 2 ๐ฃ 1 ๐ฃ 2 ๐ธ 0๐ผ โ ๐ธ 0๐
=๐ฝ ๐ธ 0๐ ๐ ๐
๐ ๐ ๐ค ๐ ๐ ๐
๐ ๐ ๐ ๐ ๐ง ๐ผ โก cos ๐ ๐ cos ๐ ๐ผ ๐ธ 0๐ผ + ๐ธ 0๐
= ๐ธ 0๐ cos ๐ ๐ cos ๐ ๐ผ ๐ธ 0๐ผ + ๐ธ 0๐
=๐ผ ๐ธ 0๐ ๐ ๐ผ ๐ ๐ผ ๐ค ๐ผ ๐ ๐ผ 1 2 Fresnel's equations ๐ธ 0๐
= ๐ผโ๐ฝ ๐ผ+๐ฝ ๐ธ 0๐ผ The reflected and the incident waves are either in phase, if ๐ผ>๐ฝ, or 180ยฐ out of phase, if ๐ผ<๐ฝ The polarization of the incident wave is parallel to the plane of incidence ๐ธ 0๐ = 2 ๐ผ+๐ฝ ๐ธ 0๐ผ The transmitted wave is always in phase with the incident one. 14 Feb 2017 Chapter 9: Electromagnetic Waves
32
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Brewster's angle 9.3.3 Reflection and Transmission at Oblique Incidence ๐ฅ ๐ ๐
๐ธ 0๐
= ๐ผโ๐ฝ ๐ผ+๐ฝ ๐ธ 0๐ผ Fresnel's equations ๐ค ๐
๐ ๐
๐ ๐ ๐ค ๐ ๐ธ 0๐ = 2 ๐ผ+๐ฝ ๐ธ 0๐ผ ๐ ๐
๐ ๐ ๐ ๐ ๐ง ๐ ๐ผ ๐ ๐ผ = 1โ sin 2 ๐ ๐ cos ๐ ๐ผ = 1โ ๐ 1 / ๐ 2 sin ๐ ๐ผ cos ๐ ๐ผ ๐ฝโก ๐ 1 ๐ 2 ๐ฃ 1 ๐ฃ 2 ๐ผ โก cos ๐ ๐ cos ๐ ๐ผ ๐ค ๐ผ ๐ ๐ผ 1 2 At Brewster's angle ๐ ๐ต , the reflected wave is completely extinguished. ๐ผ=๐ฝ Air ๐ 1 =1.0 Glass ๐ 2 =1.5 ๐ 1 โ
๐ 2 โ
๐ 0 1โ ๐ 1 / ๐ 2 sin ๐ ๐ต cos ๐ ๐ต =๐ฝ ๐ฝโ
๐ฃ 1 ๐ฃ 2 = ๐ 2 ๐ 1 1โ ๐ 1 ๐ 2 sin ๐ ๐ต 2 = cos 2 ๐ ๐ต ๐ฝ 2 sin 2 ๐ ๐ต โ
๐ฝ ๐ฝ 2 1โ ๐ 1 ๐ 2 sin ๐ ๐ต 2 = 1โ sin 2 ๐ ๐ต ๐ฝ 2 1โ ๐ฝ 2 = ๐ 1 ๐ โ๐ฝ 2 sin 2 ๐ ๐ต ๐ก๐๐ ๐ ๐ต โ
๐ 2 ๐ 1 sin 2 ๐ ๐ต = 1โ ๐ฝ ๐ 1 ๐ โ๐ฝ 2 180ยฐ out of phase 14 Feb 2017 Chapter 9: Electromagnetic Waves
33
Chapter 9: Electromagnetic Waves
9.3 Electromagnetic Waves in Matter Reflection and transmission coefficients 9.3.3 Reflection and Transmission at Oblique Incidence ๐ฅ ๐ ๐
The power per unit area striking the interface is ๐โ ๐ณ ๐ค ๐
๐ ๐
๐ ๐ ๐ค ๐ The average power per unit area of interface, and the interface is at an angle to the wave front. ๐ ๐
๐ ๐ ๐ ๐ ๐ง ๐ ๐ผ ๐ ๐ผ ๐ผ ๐ผ = 1 2 ๐ 1 ๐ฃ 1 ๐ธ 0๐ผ 2 cos ๐ ๐ผ The incident intensity is ๐ค ๐ผ ๐ผ ๐
= 1 2 ๐ 1 ๐ฃ 1 ๐ธ 0๐
2 cos ๐ ๐
๐ ๐ผ The reflected intensity is 1 2 ๐ผ ๐ = 1 2 ๐ 2 ๐ฃ 2 ๐ธ 0๐ 2 cos ๐ ๐ The transmitted intensity is The reflection coefficient Air ๐ 1 =1.0 Glass ๐ 2 =1.5 ๐
โก ๐ผ ๐
๐ผ ๐ผ = ๐ธ 0๐
๐ธ 0๐ผ 2 The polarization of the incident wave is parallel to the plane of incidence The transmission coefficient ๐โก ๐ผ ๐ ๐ผ ๐ผ = ๐ 2 ๐ฃ 2 ๐ 1 ๐ฃ ๐ธ 0๐ ๐ธ 0๐ผ cos ๐ ๐ cos ๐ ๐ผ =๐ผ๐ฝ 2 ๐ผ+๐ฝ 2 14 Feb 2017 Chapter 9: Electromagnetic Waves
34
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Transient behavior of free charge 9.4.1 Electromagnetic Waves in Conductors In the case of conductors ๐ ๐ is not zero. ๐ ๐ ๐ ๐๐ก =โ๐โ ๐ ๐ The continuity equation for free charge Ohm's law, the free current density in a conductor is proportional to the electric field. ๐ ๐ ๐ ๐๐ก =โ๐โ๐๐ Using Ohm's law ๐ ๐ =๐๐ ๐ ๐ ๐ ๐๐ก =โ๐(๐โ๐) For a homogeneous linear medium ๐โ๐= 1 ๐ ๐ ๐ ๐ ๐ ๐ ๐๐ก =โ ๐ ๐ ๐ ๐ Using Gauss's law ๐ ๐ (๐ก)= ๐ ๐ (0) ๐ โ( ๐ ๐ )๐ก Any initial free charge density ๐ ๐ (0) dissipates in a characteristic time ๐=๐โ๐. If you put some free charge on a conductor, it will flow out to the edges. For a "perfect" conductor ๐=โ and ๐=0. For a "good" conductor, ๐ is much less than the other relevant times in the problem (in oscillatory systems, ๐โช1/๐) For a "poor" conductor, ๐ is greater than the characteristic times in the problem (๐โซ1/๐). We're not interested in this transient behavior. We'll wait for any accumulated free charge to disappear. From then on ๐ ๐ =0. 14 Feb 2017 Chapter 9: Electromagnetic Waves
35
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Complex wave number 9.4.1 Electromagnetic Waves in Conductors In the case of conductors ๐ ๐ is not zero. Ohm's law ๐ ๐ =๐๐ ๐ร๐=โ ๐ ๐๐ก ๐ ๐ร๐=๐๐ ๐ ๐๐ก ๐+๐๐๐ ๐โ๐=0 ๐โ๐=0 ๐ร(๐ร๐)=๐รโ ๐ ๐๐ก ๐ ๐ร ๐ร๐ =๐ร๐๐ ๐ ๐๐ก ๐+๐ร๐๐๐ ๐ ๐โ๐ โ ๐ป 2 ๐=โ ๐ ๐๐ก ๐ร๐ ๐ ๐โ๐ โ ๐ป 2 ๐ =๐๐ ๐ ๐๐ก ๐ร๐+๐๐ ๐ร๐ ๐ป 2 ๐=๐๐ ๐ 2 ๐ ๐ก 2 ๐+๐๐ ๐ ๐๐ก ๐ ๐ป 2 ๐ =๐๐ ๐ 2 ๐ ๐ก 2 ๐+๐๐ ๐ ๐๐ก ๐ These equations still admit plane-wave solutions ๐ ๐ง,๐ก = ๐ 0 ๐ i ๐ ๐งโ๐๐ก ๐ ๐ง,๐ก = ๐ 0 ๐ i ๐ ๐งโ๐๐ก "wave number" ๐ is complex โ ๐ 2 ๐ 0 ๐ i ๐ ๐งโ๐๐ก =๐๐ โ ฯ 2 ๐ 0 ๐ i ๐ ๐งโ๐๐ก +๐๐(โ๐๐ ๐ 0 ๐ i ๐ ๐งโ๐๐ก ) ๐ 2 =๐๐ ฯ 2 +๐๐๐๐ 14 Feb 2017 Chapter 9: Electromagnetic Waves
36
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Real and imaginary parts of ๐ 9.4.1 Electromagnetic Waves in Conductors "wave number" ๐ is complex ๐ 2 =๐๐ ฯ 2 +๐๐๐๐ ๐ =๐+๐๐
๐ 2 =๐๐ ฯ 2 (1+๐ ๐๐๐ ๐๐ ฯ 2 ) ๐ 2 =๐๐ ฯ 2 (1+๐ ๐ ๐๐ ) ๐โก ๐ ๐๐ ๐ 2 โก๐๐ ฯ 2 ๐=๐๐ฅ ๐ =๐ 1+๐๐ 1โ2 =๐(๐ฅ+๐๐ฆ) ๐
=๐๐ฆ 1+๐๐= ๐ฅ 2 โ ๐ฆ 2 +2๐๐ฅ๐ฆ ๐ฅ 2 โ ๐ฆ 2 =1 2๐ฅ๐ฆ=b 4 ๐ฅ 2 ๐ฆ 2 = ๐ 2 ๐=ฯ ๐๐ ๐ ๐๐ /2 4(1+ ๐ฆ 2 ) ๐ฆ 2 = ๐ 2 ๐ฆ ๐ฆ 2 = ๐ 2 4 ๐ฆ 2 = โ1ยฑ 1+ ๐ 2 2 ๐ฆ = ๐ 2 โ1 1โ2 ๐
=ฯ ๐๐ ๐ ๐๐ 2 โ1 1/2 ๐ฅ 2 = +1ยฑ 1+ ๐ 2 2 ๐ฅ = ๐ โ2 14 Feb 2017 Chapter 9: Electromagnetic Waves
37
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Skin depth 9.4.1 Electromagnetic Waves in Conductors ๐=ฯ ๐๐ ๐ ๐๐ /2 ๐ ๐ง,๐ก = ๐ 0 ๐ i ๐ ๐งโ๐๐ก plane-wave solutions ๐ ๐ง,๐ก = ๐ 0 ๐ i ๐ ๐งโ๐๐ก ๐
=ฯ ๐๐ ๐ ๐๐ 2 โ1 1/2 ๐ =๐+๐๐
"wave number" ๐ is complex ๐ ๐ง,๐ก = ๐ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก ๐ ๐ง,๐ก = ๐ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก ๐โก 1 ๐
The skin depth is the distance it takes to reduce the amplitude by a factor of 1/๐. It is a measure of how far the wave penetrates into the conductor. ๐, the real part of ๐ , determines ๐= 2๐ ๐ the wavelength, ๐ฃ= ๐ ๐ the propagation speed, ๐= ๐ ๐ฃ and the index of refraction. 14 Feb 2017 Chapter 9: Electromagnetic Waves
38
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Transverse waves 9.4.1 Electromagnetic Waves in Conductors ๐ ๐ง,๐ก = ๐ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก No new constraints from ๐ร๐=๐๐ ๐ ๐๐ก ๐+๐๐๐ ๐ ๐ง,๐ก = ๐ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก ๐ฑ ๐ฒ ๐ณ ๐ ๐๐ฅ ๐ ๐๐ฆ ๐ ๐๐ง 0 ๐ต ๐ฆ 0 Maxwell's equations impose extra constraints on ๐ ๐ and ๐ ๐ ๐โ๐=0 โ ( ๐ธ 0 ) ๐ง =0 No ๐ง components: the fields are transverse ๐โ๐=0 โ ( ๐ต 0 ) ๐ง =0 โ๐ ๐ ๐ต 0 =(๐๐(โ๐๐) +๐๐) ๐ธ 0 We may orient our axes so that ๐ is polarized along the ๐ฅ direction: ๐ต 0 = ๐๐ โ๐๐ +๐๐ โ๐ ๐ ๐ธ 0 ๐ ๐ง,๐ก = ๐ธ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก ๐ ๐ต 0 = ๐๐ โ๐๐ +๐๐ โ๐ ๐ ๐ ๐ ๐ ๐ ๐ธ 0 ๐ร๐=โ ๐ ๐๐ก ๐ ๐ ๐ ๐ธ 0 =โ โ๐๐ ๐ 0 ๐ฆ ๐ต 0 = ๐ ๐ ๐ธ 0 ๐ต 0 = ๐(๐๐ โ๐ ๐ 2 +๐๐๐) โ๐ ๐ ๐ ๐ ๐ธ 0 0=โ(โ๐๐) ๐ 0 ๐ฅ ๐ฑ ๐ฒ ๐ณ ๐ ๐๐ฅ ๐ ๐๐ฆ ๐ ๐๐ง ๐ธ ๐ฅ 0 0 ๐ ๐ง,๐ก = ๐ ๐ ๐ธ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก ๐ ๐ต 0 = ๐๐ ๐ 2 +๐๐๐๐ ๐ ๐ ๐ ๐ธ 0 ๐ต 0 = ๐ ๐ ๐ ๐ ๐ธ 0 E and B are mutually perpendicular 14 Feb 2017 Chapter 9: Electromagnetic Waves
39
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Magnetic and electric fields are not in phase 9.4.1 Electromagnetic Waves in Conductors ๐ ๐ง,๐ก = ๐ธ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก ๐ ๐=ฯ ๐๐ ๐ ๐๐ /2 ๐
=ฯ ๐๐ ๐ ๐๐ 2 โ1 1/2 ๐ ๐ง,๐ก = ๐ ๐ ๐ธ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก ๐ ๐ต 0 = ๐ ๐ ๐ธ 0 ๐พ= ฯ ๐๐ ๐ ๐๐ ๐ ๐๐ 2 โ1 ๐พ= ๐ = ๐ 2 + ๐
2 ๐ =๐+๐๐
=๐พ ๐ ๐๐ ๐= tan โ1 (๐
โ๐) ๐ธ 0 = ๐ธ 0 ๐ ๐ ๐ฟ ๐ธ ๐พ= ฯ ๐๐ ๐ ๐๐ 2 =ฯ ๐๐ ๐ ๐๐ 2 ๐ต 0 = ๐ต 0 ๐ ๐ ๐ฟ ๐ต ๐ต 0 ๐ ๐ ๐ฟ ๐ต = ๐พ ๐ ๐๐ ๐ ๐ธ 0 ๐ ๐ ๐ฟ ๐ธ The electric and magnetic fields are no longer in phase. ๐ฟ ๐ต โ ๐ฟ ๐ธ =๐ The magnetic field lags behind the electric field. = ๐๐ ๐ ๐๐ 2 ๐ ๐ง,๐ก = ๐ธ 0 ๐ โ๐
๐ง cos ๐๐งโ๐๐ก+ ๐ฟ ๐ธ ๐ ๐ต 0 ๐ธ 0 = ๐พ ๐ ๐ ๐ง,๐ก = ๐ต 0 ๐ โ๐
๐ง cos ๐๐งโ๐๐ก+ ๐ฟ ๐ธ +๐ ๐ 14 Feb 2017 Chapter 9: Electromagnetic Waves
40
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Excellent reflectors 9.4.2 Reflection at a Conducting Surface ๐ ๐
๐ง,๐ก = ๐ธ 0๐
๐ i โ ๐ 1 ๐งโ๐๐ก ๐ฑ ๐ฅ ๐ธ 0๐
= 1โ ๐ฝ 1+ ๐ฝ ๐ธ 0๐ผ ๐ค ๐
๐ ๐ ๐ง,๐ก = ๐ธ 0๐ ๐ i ๐ ๐ ๐งโ๐๐ก ๐ฑ ๐ฝ โก ๐ 1 ๐ฃ 1 ๐ ๐ ๐ 2 ๐ a complex number ๐ ๐
๐ง,๐ก = โ 1 ๐ฃ 1 ๐ธ 0๐
๐ i โ ๐ 1 ๐งโ๐๐ก ๐ฒ ๐ค ๐ ๐ ๐ ๐ง,๐ก = ๐ ๐ ๐ ๐ธ 0๐ ๐ i ๐ 2 ๐งโ๐๐ก ๐ฒ ๐ธ 0๐ = 2 1+ ๐ฝ ๐ธ 0๐ผ ๐ ๐ผ ๐ง,๐ก = ๐ธ 0๐ผ ๐ i ๐ 1 ๐งโ๐๐ก ๐ฑ ๐ง ๐ค ๐ผ For a perfect conductor, ๐=โ, ๐ 2 =โ, ๐ฝ =โ. ๐ ๐ผ ๐ง,๐ก = 1 ๐ฃ 1 ๐ธ 0๐ผ ๐ i ๐ 1 ๐งโ๐๐ก ๐ฒ ๐ธ 0๐
=โ ๐ธ 0๐ผ ๐ธ 0๐ =0 nonconducting linear medium 1 2 conductor Boundary conditions ๐ 1 ๐ธ 1 โฅ โ ๐ 2 ๐ธ 2 โฅ = ๐ ๐ Since ๐ธ โฅ =0 on both sides โ ๐ ๐ =0 Excellent conductors make good mirrors. ๐ต 1 โฅ = ๐ต 2 โฅ Since ๐ต โฅ =0 on both sides ๐ 1 โฅ = ๐ 2 โฅ ๐ธ 0๐ผ + ๐ธ 0๐
= ๐ธ 0๐ ๐ธ 0๐ผ + ๐ธ 0๐
= ๐ธ 0๐ The skin depth in silver at optical frequencies is on the order of 100 โซ. 1 ๐ 1 ๐ 1 โฅ โ 1 ๐ 2 ๐ 2 โฅ = ๐ ๐ ร ๐ง 1 ๐ 1 ๐ฃ ๐ธ 0๐ผ โ ๐ธ 0๐
โ ๐ ๐ ๐ 2 ๐ ๐ธ 0๐ =0 ๐ธ 0๐ผ โ ๐ธ 0๐
= ๐ 1 ๐ฃ 1 ๐ ๐ ๐ 2 ๐ ๐ธ 0๐ ๐ ๐ is the free surface charge For ohmic conductors ( ๐ ๐ =๐๐) there can be no free surface current, since this would require an infinite electric field at the boundary. ๐ ๐ = ๐ f ๐ฟ ๐ง =๐๐ ๐ ๐ is the free surface current density ๐ง is a unit vector perpendicular to the surface, pointing from medium (2) into medium (1) 14 Feb 2017 Chapter 9: Electromagnetic Waves
41
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Dispersion 9.4.3 The Frequency Dependence of Permittivity The permittivity ๐, the permeability ๐, and the conductivity ๐ depends on the frequency of the waves. a typical glass The index of refraction in a transparent medium n is a function of wavelength A prism bends blue light more sharply than red. This phenomenon is called dispersion. The medium is called dispersive if the speed of a wave depends on its frequency. In a dispersive medium, a wave form that incorporates a range of frequencies will change shape as it propagates. A sharply peaked wave typically flattens out. ๐ฃ= ๐ ๐ Each sinusoidal component travels at the ordinary wave (or phase) velocity, The packet as a whole (the "envelope") travels at the group velocity ๐ฃ ๐ = ๐๐ ๐๐ The energy carried by a wave packet in a dispersive medium travels at the group velocity, not the phase velocity. It is ok that at some circumstances the phase velocity becomes greater than c. We will stick to monochromatic waves. 14 Feb 2017 Chapter 9: Electromagnetic Waves
42
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Model 9.4.3 The Frequency Dependence of Permittivity We want to account for the frequency dependence of ๐ in nonconductors, using a simplified model for the behavior of electrons in dielectrics. The electrons in a nonconductor are bound to specific molecules. Picture each electron as attached to the end of an imaginary spring, with force constant ๐ ๐ ๐๐๐๐๐ Any binding force can be approximated by a spring force for sufficiently small displacements from equilibrium. ๐น ๐๐๐๐๐๐๐ =โ ๐ ๐ ๐๐๐๐๐ ๐ฅ=โ๐ ๐ 0 2 ๐ฅ ๐ฅ is displacement from equilibrium. ๐ is the electron's mass. ๐ 0 is the natural oscillation frequency = ๐ ๐ ๐๐๐๐๐ โ๐ . Newton's second law gives There will be some damping force on the electron ๐ ๐ 2 ๐ฅ ๐ ๐ก 2 = ๐น ๐๐๐๐๐๐๐ + ๐น ๐๐๐๐๐๐๐ + ๐น ๐๐๐๐ฃ๐๐๐ ๐น ๐๐๐๐๐๐๐ =โ๐๐พ ๐๐ฅ ๐๐ก ๐ ๐ 2 ๐ฅ ๐ ๐ก 2 +๐ ๐ 0 2 ๐ฅ+๐๐พ ๐๐ฅ ๐๐ก =๐ ๐ธ 0 cos ๐๐ก The driving force due to an electromagnetic wave of frequency ๐, polarized in the ๐ฅ direction Our model describes the electron as a damped harmonic oscillator, driven at frequency ๐. ๐น ๐๐๐๐ฃ๐๐๐ =๐๐ธ=๐ ๐ธ 0 cos ๐๐ก ๐ is the charge of the electron. ๐ธ 0 is the amplitude of the wave. We assume that the much more massive nuclei remain at rest. 14 Feb 2017 Chapter 9: Electromagnetic Waves
43
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Dipole moment 9.4.3 The Frequency Dependence of Permittivity ๐ ๐ 2 ๐ฅ ๐ ๐ก 2 +๐ ๐ 0 2 ๐ฅ+๐๐พ ๐๐ฅ ๐๐ก =๐ ๐ธ 0 cos ๐๐ก A damped harmonic oscillator, driven at frequency ๐. It is easier to handle if we regard it as the real part of a complex equation: ๐ ๐ 2 ๐ฅ ๐ ๐ก 2 +๐ ๐ 0 2 ๐ฅ +๐๐พ ๐ ๐ฅ ๐๐ก = ๐ ๐ ๐ธ 0 e โi๐๐ก In the steady state, the system oscillates at the driving frequency ๐ ๐ฅ = ๐ฅ 0 ๐ โ๐๐๐ก โ๐ ๐ฅ 0 ๐ 2 e โi๐๐ก +๐ ๐ ๐ฅ 0 e โi๐๐ก +๐๐พ(โ๐๐ ๐ฅ 0 ) e โi๐๐ก = ๐ ๐ ๐ธ 0 e โi๐๐ก ๐ฅ 0 = ๐ ๐ ๐ 0 2 โ ๐ 2 โ๐๐๐พ ๐ธ 0 The dipole moment is the real part of The imaginary term in the denominator means that ๐ is out of phase with ๐ธ-lagging behind by an angle tan โ1 [ ๐พ๐ ๐ 0 2 โ ๐ 2 ] that is very small when ๐โช ๐ 0 and rises to ๐ when ๐โซ ๐ 0 ๐ ๐ก =๐ ๐ฅ (๐ก)= ๐ 2 ๐ ๐ 0 2 โ ๐ 2 โ๐๐๐พ ๐ธ 0 e โi๐๐ก 14 Feb 2017 Chapter 9: Electromagnetic Waves
44
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Complex dielectric constant 9.4.3 The Frequency Dependence of Permittivity ๐ ๐ก =๐ ๐ฅ (๐ก)= ๐ 2 ๐ ๐ 0 2 โ ๐ 2 โ๐๐๐พ ๐ธ 0 e โi๐๐ก ๐โก ฯต 0 ๐+๐ Linear medium ๐โก ฯต 0 ๐ ๐ ๐ In general, differently situated electrons within a given molecule experience different natural frequencies and damping coefficients. Let's say there are ๐ ๐ electrons with frequency ๐ ๐ and damping ๐พ ๐ in each molecule. If there are N molecules per unit volume, the polarization ๐ is given by the real part of ๐ ๐ is the electric susceptibility ๐= ฯต 0 (1+ ๐ ๐ )๐ ๐= ฯต 0 ๐ ๐ ๐ ๐=ฯต๐ ๐ ๐ก = ๐ ๐ 2 ๐ ๐ ๐ ๐ ๐ ๐ 2 โ ๐ 2 โ๐ ๐พ ๐ ๐ ๐ This is not a linear medium since ๐ is not proportional to ๐ because of the difference in phase. The complex polarization ๐ is proportional to the complex field ๐ ๐ ๐ก = ๐ 0 ๐ ๐ ๐ ๐ ๐ is complex susceptibility ๐ = ๐ ๐ ๐ = ๐ 0 (1+ ๐ 0 ) is the complex permittivity The complex dielectric constant ๐ ๐ =1+ ๐ ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐ 2 โ ๐ 2 โ๐ ๐พ ๐ ๐ Ordinarily, the imaginary term is negligible; however, when ๐ is very close to one of the resonant frequencies ( ๐ j ) it plays an important role. 14 Feb 2017 Chapter 9: Electromagnetic Waves
45
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Absorption coefficient 9.4.3 The Frequency Dependence of Permittivity Linear homogenous In a dispersive medium the wave equation for a given frequency is ๐โ๐=0 ๐โ๐=0 ๐โ๐=0 ๐ป 2 ๐ = ๐ ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ ๐ร๐=โ ๐ ๐๐ก ๐ ๐ร๐= ๐ ๐๐ก ๐ Non-magnetic ๐ร๐= ๐ 0 ๐ ๐๐ก ๐ It admits plane wave solutions ๐ ๐ง,๐ก = ๐ 0 ๐ i ๐ ๐งโ๐๐ก ๐ร(๐ร๐)=๐รโ ๐ ๐๐ก ๐ โ ๐ 2 = ๐ ๐ 0 (โ ๐ 2 ) ๐ ๐โ๐ โ ๐ป 2 ๐=โ ๐ ๐๐ก ๐ร๐ ๐ป 2 ๐= ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ The complex wave number ๐ = ๐ ๐ 0 ๐ ๐ป 2 ๐ = ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ ๐ = ๐ ๐ ๐ป 2 ๐ = ๐ ๐ 0 ๐ 2 ๐ ๐ก 2 ๐ ๐ =๐+๐๐
๐ ๐ง,๐ก = ๐ 0 ๐ โ๐
๐ง ๐ i ๐๐งโ๐๐ก The wave is attenuated , since the damping absorbs energy. Because the intensity is proportional to ๐ธ 2 and hence to ๐ โ2๐
๐ง , ๐ผโก2๐
is called the absorption coefficient. Here ๐ and ๐
have nothing to do with conductivity. They are determined by the parameters of the damped harmonic oscillator. The wave velocity is ๐ฃ= ๐ ๐ The index of refraction is ๐= ๐๐ ๐ 14 Feb 2017 Chapter 9: Electromagnetic Waves
46
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Absorption coefficient for gases 9.4.3 The Frequency Dependence of Permittivity For gases, this is small << 1 ๐ ๐ =1+ ๐ ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐ 2 โ ๐ 2 โ๐ ๐พ ๐ ๐ ๐ = ๐ ๐ 0 ๐= ๐ ๐ ๐ 0 ๐ 0 ๐= ๐ ๐ ๐ ๐ ๐ ๐ = 1+๐ฟ โ ๐ฟ ๐ = ๐ ๐ ๐ ๐ โ
๐ ๐ ๐ ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐ 2 โ ๐ 2 โ๐ ๐พ ๐ ๐ Most of the time the index of refraction rises gradually with increasing frequency, consistent with our experience from optics. The index of refraction ๐= ๐๐ ๐ โ
๐ ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐ 2 โ ๐ ๐ ๐ 2 โ ๐ ๐พ ๐ 2 ๐ 2 In the neighborhood of a resonance the index of refraction drops sharply. It is called anomalous dispersion. The region of anomalous dispersion ( ๐ 1 <๐< ๐ 2 ) coincides with the region of maximum absorption. The absorption coefficient The amplitude of electrons oscillation is relatively large, and hence a large amount of energy is dissipated by the damping mechanism. ๐ผ=2๐
โ
๐ ๐ 2 ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐พ ๐ ๐ ๐ 2 โ ๐ 2 + ๐พ ๐ 2 ๐ 2 n runs below 1 above the resonance, suggesting that the wave speed exceeds c. This is ok, since energy does not travel at the wave velocity but rather at the group velocity. 14 Feb 2017 Chapter 9: Electromagnetic Waves
47
Chapter 9: Electromagnetic Waves
9.4 Absorption and Dispersion Absorption coefficient for gases 9.4.3 The Frequency Dependence of Permittivity The index of refraction ๐= ๐๐ ๐ โ
๐ ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐ 2 โ ๐ ๐ ๐ 2 โ ๐ ๐พ ๐ 2 ๐ 2 ๐โ
๐ ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐ 2 โ ๐ 2 Away from the resonances, the damping can be ignored, For most substances the natural frequencies ๐ ๐ are scattered all over the spectrum. For transparent materials, the nearest significant resonances typically lie in the ultraviolet, ๐<๐ ๐ ๐โ
๐ ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ 2 ๐ ๐ 0 ๐ ๐ ๐ ๐ ๐ 4 1 ๐ ๐ 2 โ ๐ 2 = 1 ๐ ๐ 2 1โ ๐ 2 ๐ ๐ 2 = 1โ ๐ 2 ๐ ๐ 2 โ1 ๐ ๐ 2 โ
1 ๐ ๐ ๐ 2 ๐ ๐ 2 In terms of the wavelength in vacuum ๐=2๐๐/๐ ๐=1+๐ด 1+ B ๐ 2 A is the coefficient of refraction Cauchy's formula B is the coefficient of dispersion It applies reasonably well to most gases, in the optical region. 14 Feb 2017 Chapter 9: Electromagnetic Waves
48
Boundary conditions 9.5 Guided Waves ๐ ๐ฅ,๐ฆ,๐ง,๐ก = ๐ 0 (๐ฅ,๐ฆ) ๐ i ๐๐งโ๐๐ก
9.5.1 Wave Guides We consider electromagnetic waves confined to the interior of a hollow pipe, or wave guide. We'll assume the wave guide is a perfect conductor. Boundary conditions inside the material Boundary conditions at the inner wall ๐ 1 โฅ = ๐ 2 โฅ ๐=0 ๐ โฅ =0 Free charges and currents will be induced on the surface in such a way as to enforce these constraints. ๐ต 1 โฅ = ๐ต 2 โฅ ๐=0 ๐ต โฅ =0 ๐ฑ ๐ฒ ๐ณ ๐ ๐๐ฅ ๐ ๐๐ฆ ๐ ๐๐ง ๐ธ ๐ฅ ๐ธ ๐ฆ ๐ธ ๐ง For monochromatic waves that propagate down the tube: ๐ ๐ฅ,๐ฆ,๐ง,๐ก = ๐ 0 (๐ฅ,๐ฆ) ๐ i ๐๐งโ๐๐ก ๐ร๐=โ ๐ ๐๐ก ๐ ๐ร๐= 1 ๐ 2 ๐ ๐๐ก ๐ ๐ ๐ฅ,๐ฆ,๐ง,๐ก = ๐ 0 (๐ฅ,๐ฆ) ๐ i ๐๐งโ๐๐ก Confined waves are not in general transverse. We need to include longitudinal components ๐ธ ๐ง and ๐ต ๐ง . ๐ ๐ธ ๐ง ๐๐ฆ โ๐๐ ๐ธ ๐ฆ =๐๐ ๐ต ๐ฅ ๐ ๐ต ๐ง ๐๐ฆ โ๐๐ ๐ต ๐ฆ =โ ๐๐ ๐ 2 ๐ธ ๐ฅ ๐ 0 = ๐ธ ๐ฅ ๐ + ๐ธ ๐ฆ ๐ + ๐ธ ๐ง ๐ โ ๐ ๐ธ ๐ง ๐๐ฅ +๐๐ ๐ธ ๐ฅ =๐๐ ๐ต ๐ฆ โ ๐ ๐ต ๐ง ๐๐ฅ +๐๐ ๐ต ๐ฅ =โ ๐๐ ๐ 2 ๐ธ ๐ฆ ๐ 0 = ๐ต ๐ฅ ๐ + ๐ต ๐ฆ ๐ + ๐ต ๐ง ๐ ๐ ๐ธ ๐ฆ ๐๐ฅ โ ๐ ๐ธ ๐ฅ ๐๐ฆ =๐๐ ๐ต ๐ง ๐ ๐ต ๐ฆ ๐๐ฅ โ ๐ ๐ต ๐ฅ ๐๐ฆ =โ ๐๐ ๐ 2 ๐ธ ๐ง To avoid cumbersome notation, the subscript 0 and the tilde are left off the individual components. 14 Feb 2017 Chapter 9: Electromagnetic Waves
49
Chapter 9: Electromagnetic Waves
9.5 Guided Waves Wave equations 9.5.1 Wave Guides ๐ ๐ธ ๐ง ๐๐ฆ โ๐๐ ๐ธ ๐ฆ =๐๐ ๐ต ๐ฅ v ๐ ๐ต ๐ง ๐๐ฆ โ๐๐ ๐ต ๐ฆ =โ ๐๐ ๐ 2 ๐ธ ๐ฅ ร๐๐ ๐๐ ๐ ๐ต ๐ง ๐๐ฆ +๐๐ ๐ต ๐ฆ = ๐ ๐ 2 ๐ธ ๐ฅ โ โโก ๐๐ ๐ ๐ต ๐ง ๐๐ฆ +๐๐ ๐ ๐ธ ๐ง ๐๐ฅ + ๐ 2 ๐ธ ๐ฅ = ๐ ๐ 2 ๐ธ ๐ฅ โ ๐ ๐ธ ๐ง ๐๐ฅ +๐๐ ๐ธ ๐ฅ =๐๐ ๐ต ๐ฆ โ ๐ ๐ต ๐ง ๐๐ฅ +๐๐ ๐ต ๐ฅ =โ ๐๐ ๐ 2 ๐ธ ๐ฆ ร๐๐ โ๐๐ ๐ ๐ธ ๐ง ๐๐ฅ โ ๐ 2 ๐ธ ๐ฅ =โ๐๐ ๐ต ๐ฆ ๐ ๐ ๐ ๐ต ๐ง ๐๐ฆ +๐ ๐ ๐ธ ๐ง ๐๐ฅ = ๐ ๐ 2 โ ๐ 2 ๐ธ ๐ฅ ๐ ๐ธ ๐ฆ ๐๐ฅ โ ๐ ๐ธ ๐ฅ ๐๐ฆ =๐๐ ๐ต ๐ง ๐ ๐ต ๐ฆ ๐๐ฅ โ ๐ ๐ต ๐ฅ ๐๐ฆ =โ ๐๐ ๐ 2 ๐ธ ๐ง ๐ธ ๐ฅ = ๐ ๐ ๐ 2 โ ๐ 2 ๐ ๐ ๐ต ๐ง ๐๐ฆ +๐ ๐ ๐ธ ๐ง ๐๐ฅ ๐ธ ๐ฅ = ๐ ๐ ๐ 2 โ ๐ 2 ๐ ๐ ๐ธ ๐ง ๐๐ฅ +๐ ๐ ๐ต ๐ง ๐๐ฆ ๐โ๐=0 ๐ ๐ ๐ 2 โ ๐ 2 ๐ ๐ 2 ๐ธ ๐ง ๐ ๐ฅ 2 +๐ ๐ 2 ๐ต ๐ง ๐๐ฅ๐๐ฆ + ๐ ๐ 2 ๐ธ ๐ง ๐ ๐ฆ 2 โ๐ ๐ 2 ๐ต ๐ง ๐๐ฆ๐๐ฅ +๐๐ ๐ธ ๐ง =0 ๐ธ ๐ฆ = ๐ ๐ ๐ 2 โ ๐ 2 ๐ ๐ ๐ธ ๐ง ๐๐ฆ โ๐ ๐ ๐ต ๐ง ๐๐ฅ ๐ 2 ๐ ๐ฅ ๐ 2 ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 ๐ธ ๐ง =0 ๐ต ๐ฅ = ๐ ๐ ๐ 2 โ ๐ 2 ๐ ๐ ๐ต ๐ง ๐๐ฅ โ ๐ ๐ 2 ๐ ๐ธ ๐ง ๐๐ฆ ๐โ๐=0 ๐ ๐ ๐ 2 โ ๐ 2 [ ๐ ๐ 2 ๐ต ๐ง ๐ ๐ฅ 2 โ ๐ ๐ 2 ๐ 2 ๐ธ ๐ง ๐๐ฅ๐๐ฆ + ๐ ๐ 2 ๐ต ๐ง ๐ ๐ฆ 2 + ๐ ๐ 2 ๐ 2 ๐ธ ๐ง ๐๐ฆ๐๐ฅ +๐๐ ๐ต ๐ง =0 ๐ต ๐ฆ = ๐ ๐ ๐ 2 โ ๐ 2 ๐ ๐ ๐ต ๐ง ๐๐ฆ + ๐ ๐ 2 ๐ ๐ธ ๐ง ๐๐ฅ ๐ 2 ๐ ๐ฅ ๐ 2 ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 ๐ต ๐ง =0 It suffices to determine the longitudinal components ๐ธ ๐ง and ๐ต ๐ง ; if we knew those, we could calculate all the others. 14 Feb 2017 Chapter 9: Electromagnetic Waves
50
Chapter 9: Electromagnetic Waves
9.5 Guided Waves No TEM waves in a hollow wave guide 9.5.1 Wave Guides ๐ 2 ๐ ๐ฅ ๐ 2 ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 ๐ธ ๐ง =0 ๐ธ ๐ง =0 TE ("transverse electric") waves. ๐ต ๐ง =0 TM ("transverse magnetic") waves. ๐ธ ๐ง =0 and ๐ต ๐ง =0 TEM waves. ๐ 2 ๐ ๐ฅ ๐ 2 ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 ๐ต ๐ง =0 TEM waves cannot occur in a hollow wave guide. Proof: Gauss's law ร ๐ ๐๐ฅ ๐ธ ๐ง =0 ๐ ๐ธ ๐ฅ ๐๐ฅ + ๐ ๐ธ ๐ฆ ๐๐ฆ =0 ๐ 2 ๐ธ ๐ฅ ๐ ๐ฅ ๐ 2 ๐ธ ๐ฆ ๐๐ฅ๐๐ฆ =0 ๐โ๐=0 โ โโก ๐ 2 ๐ธ ๐ฅ ๐ ๐ฅ ๐ 2 ๐ธ ๐ฅ ๐ 2 ๐ฆ =0 Faraday's law ๐ป 2 ๐ธ ๐ฅ =0 ร ๐ ๐๐ฆ ๐ร๐=โ ๐ ๐๐ก ๐ ๐ต ๐ง =0 ๐ ๐ธ ๐ฆ ๐๐ฅ โ ๐ ๐ธ ๐ฅ ๐๐ฆ =0 ๐ 2 ๐ธ ๐ฆ ๐๐ฆ๐๐ฅ โ ๐ 2 ๐ธ ๐ฅ ๐ 2 ๐ฆ =0 Since Laplace's equation admits no local maxima or minima, and since, on the boundary, ๐ธ ๐ฅ =0, this means that ๐ธ ๐ฅ =0 throughout. The same argument holds for ๐ธ ๐ฆ . 14 Feb 2017 Chapter 9: Electromagnetic Waves
51
Chapter 9: Electromagnetic Waves
9.5 Guided Waves No TEM waves in a hollow wave guide 9.5.1 Wave Guides TEM waves cannot occur in a hollow wave guide. ๐ร๐= ๐ฑ ๐ฒ ๐ณ ๐ ๐๐ฅ ๐ ๐๐ฆ ๐ ๐๐ง ๐ธ ๐ฆ ๐ธ ๐ฆ 0 = ๐ ๐ธ ๐ฆ ๐๐ฅ โ ๐ ๐ธ ๐ฅ ๐๐ฆ ๐ณ Another Proof: =0 Gauss's law ๐โ๐=0 ๐ร๐=โ ๐ ๐๐ก ๐ ๐ ๐ธ ๐ฆ ๐๐ฅ โ ๐ ๐ธ ๐ฅ ๐๐ฆ =โ ๐ ๐๐ก ๐ต ๐ง Faraday's law =0 The vector ๐ 0 has zero divergence and zero curl. It can be written as the gradient of scalar potential that satisfies Laplace's equation. ๐ร๐๐=0 ๐ร๐=0 ๐โกโ๐๐ ๐โ๐=0 ๐โ๐๐=0 ๐ป 2 ๐=0 The boundary condition ๐ โฅ =0 requires that the surface be an equipotential. Since Laplace's equation admits no local maxima or minima, this means that the potential is constant throughout, and hence the electric field is zero. This argument applies only to a completely empty pipe. It does not apply if a pipe has a separate conductor in the middle. 14 Feb 2017 Chapter 9: Electromagnetic Waves
52
Chapter 9: Electromagnetic Waves
9.5 Guided Waves ๐ต ๐ง (๐ฅ,๐ฆ) 9.5.2 TE Waves in a Rectangular Wave Guide ๐ 2 ๐ ๐ฅ ๐ 2 ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 ๐ต ๐ง =0 ๐ธ ๐ง =0 Separation of variables: ๐ต ๐ง ๐ฅ,๐ฆ =๐ ๐ฅ ๐(๐ฆ) A wave guide of rectangular shape TE waves ๐ ๐ 2 ๐ ๐ ๐ฅ 2 +๐ ๐ 2 ๐ ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 ๐๐=0 1 ๐ ๐ 2 ๐ ๐ ๐ฅ ๐ ๐ 2 ๐ ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 =0 Divide by ๐๐: The x- and y-dependent terms must be constant: 1 ๐ ๐ 2 ๐ ๐ ๐ฅ 2 =โ ๐ ๐ฅ 2 1 ๐ ๐ 2 ๐ ๐ ๐ฆ 2 =โ ๐ ๐ฆ 2 โ ๐ ๐ฅ 2 โ ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 =0 ๐ ๐ฅ =๐ด sin ๐ ๐ฅ ๐ฅ +๐ต cos ๐ ๐ฅ ๐ฅ Boundary condition: ๐ต โฅ =0 ๐ต ๐ฅ =0 ๐๐ ๐๐ฅ =๐ด ๐ ๐ฅ cos ๐ ๐ฅ ๐ฅ โ ๐ ๐ฅ ๐ต sin ๐ ๐ฅ ๐ฅ ๐ต ๐ฅ = ๐ ๐ ๐ 2 โ ๐ 2 ๐ ๐ ๐ต ๐ง ๐๐ฅ โ ๐ ๐ 2 ๐ ๐ธ ๐ง ๐๐ฆ ๐๐ ๐๐ฅ โ ๐ฅ=0 =๐ด ๐ ๐ฅ =0 ๐๐ ๐๐ฅ โ ๐ฅ=๐ =โ ๐ ๐ฅ ๐ต sin ๐ ๐ฅ ๐ =0 0= ๐ ๐ ๐ 2 โ ๐ 2 ๐ ๐ ๐ต ๐ง ๐๐ฅ โ ๐ ๐ 2 ๐0 ๐๐ฆ ๐ด=0 ๐ ๐ฅ = ๐๐ ๐ ๐=0, 1, 2, โฆ ๐ ๐ต ๐ง ๐๐ฅ =0 ๐๐ ๐๐ฅ =0 The same goes for ๐(๐ฆ) ๐ ๐ฆ = ๐๐ ๐ ๐=0, 1, 2, โฆ ๐ต ๐ง ๐ฅ,๐ฆ = ๐ต 0 cos ๐๐๐ฅ ๐ cos ( ๐๐๐ฆ ๐ ) 14 Feb 2017 Chapter 9: Electromagnetic Waves
53
Chapter 9: Electromagnetic Waves
9.5 Guided Waves Cutoff frequency 9.5.2 TE Waves in a Rectangular Wave Guide ๐ต ๐ง ๐ฅ,๐ฆ = ๐ต 0 cos ๐๐๐ฅ ๐ cos ( ๐๐๐ฆ ๐ ) ๐=0, 1, 2, โฆ At least one of the indices must be nonzero ๐=0, 1, 2, โฆ This solution is called the ๐ ๐ธ ๐๐ mode. The first index is conventionally associated with the larger dimension, so we assume a > b. A wave guide of rectangular shape TE waves โ ๐ ๐ฅ 2 โ ๐ ๐ฆ ๐ ๐ 2 โ ๐ 2 =0 ๐ ๐ฅ = ๐๐ ๐ ๐ ๐ฆ = ๐๐ ๐ ๐= ๐ ๐ 2 โ ๐ 2 [ ๐ ๐ ๐ ๐ 2 ] ๐ 2 ๐ ๐ ๐ ๐ ๐ 2 โก ๐ ๐๐ 2 ๐= 1 ๐ ๐ 2 โ ๐ ๐๐ 2 If ๐< ๐ ๐๐ , the wave number is imaginary, and instead of a traveling wave we have exponentially attenuated fields. ๐ ๐๐ is called the cutoff frequency for the ๐๐ mode. ๐ ๐ฅ,๐ฆ,๐ง,๐ก = ๐ 0 (๐ฅ,๐ฆ) ๐ i ๐๐งโ๐๐ก ๐ฃ= ๐ ๐ = ๐ 1โ ๐ ๐๐ ๐ 2 The wave velocity is >๐ The lowest cutoff frequency for a given wave guide occurs for the mode ๐ ๐ธ 10 The energy carried by the wave travels at the group velocity ๐ 10 = ๐๐ ๐ ๐ฃ ๐ = ๐๐ ๐๐ =๐ 1โ ๐ ๐๐ ๐ 2 Frequencies less than this will not propagate at all. <๐ 14 Feb 2017 Chapter 9: Electromagnetic Waves
54
Chapter 9: Electromagnetic Waves
9.5 Guided Waves Another way 9.5.2 TE Waves in a Rectangular Wave Guide Consider an ordinary plane wave, traveling at an angle ๐ to the ๐ง axis, and reflecting perfectly off each conducting surface. In the ๐ฅ and ๐ฆ directions the (multiply reflected) waves interfere to form standing wave patterns, ๐ ๐ฅ = 2๐ ๐ ๐ ๐ฅ = ๐๐ ๐ ๐ ๐ฆ = 2๐ ๐ ๐ ๐ฆ = ๐๐ ๐ In the ๐ง direction there remains a traveling wave, with wave number ๐ ๐ง =๐ The plane wave travels at speed e, but because it is going at an angle ๐ to the ๐ง axis, its net velocity down the wave guide is ๐ฃ ๐ =๐ cos ๐ =๐ 1โ ๐ ๐๐ โ๐ 2 The propagation vector for the "original" plane wave is ๐ค โฒ = ๐๐ ๐ ๐ฑ + ๐๐ ๐ ๐ฒ +๐ ๐ณ The frequency is ๐=๐ ๐ค โฒ =๐ ๐ 2 โ ๐ 2 [ ๐ ๐ ๐ ๐ 2 ] = ๐๐ ๐ ๐๐ 2 The wave velocity is the speed of the wave fronts down the pipe. Similar to point A. ๐ฃ= ๐ cos ๐ = ๐ 1โ ๐ ๐๐ ๐ 2 Only certain angles will lead to one of the allowed standing wave patterns cos ๐ = ๐ ๐ค โฒ = 1โ ๐ ๐๐ โ๐ 2 Like the intersection of a line of breakers with the beach 14 Feb 2017 Chapter 9: Electromagnetic Waves
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.