Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to Bioinformatics /234525

Similar presentations


Presentation on theme: "Introduction to Bioinformatics /234525"— Presentation transcript:

1 Introduction to Bioinformatics 236523/234525
Lecturer: Prof. Yael Mandel-Gutfreund Teaching Assistance: Shai Ben-Elazar Idit kosti Course web site :

2 What is Bioinformatics?

3 Course Objectives To introduce the bioinfomatics discipline
To make the students familiar with the major biological questions which can be addressed by bioinformatics tools To introduce the major tools used for sequence and structure analysis and explain in general how they work (limitation etc..)

4 Course Structure and Requirements
Class Structure 2 hours Lecture 1 hour tutorial 2. Home work Homework assignments will be given every second week The homework will be done in pairs. 5/5 homework assignments will be submitted 2. A final project will be conducted in pairs * Project will be presented as a poster –poster day 14.3

5 Grading 20 % Homework assignments 80 % final project

6 Literature list Gibas, C., Jambeck, P. Developing Bioinformatics Computer Skills. O'Reilly, 2001. Lesk, A. M. Introduction to Bioinformatics. Oxford University Press, 2002. Mount, D.W. Bioinformatics: Sequence and Genome Analysis. 2nd ed.,Cold Spring Harbor Laboratory Press, 2004. Advanced Reading Jones N.C & Pevzner P.A. An introduction to Bioinformatics algorithms MIT Press, 2004

7 What is Bioinformatics?

8 What is Bioinformatics?
“The field of science in which biology, computer science, and information technology merge to form a single discipline” Ultimate goal: to enable the discovery of new biological insights as well as to create a global perspective from which unifying principles in biology can be discerned.

9 Central Paradigm in Molecular Biology
Gene (DNA) mRNA Protein 21ST centaury Genome Transcriptome Proteome

10 Watson and Crick DNA model
From DNA to Genome Watson and Crick DNA model 1955 1960 1965 1970 1975 1980 1985

11 First human genome draft
1990 First genome Hemophilus Influenzae 1995 Yeast genome First human genome draft 2000

12 Complete Genomes 2010 2005 Total 1379 294 Eukaryotes 133 39
Bacteria Archaea

13 1,000 Genomes Project: Expanding the Map of Human Genetics
Researchers hope the effort will speed up the discovery of many diseases's genetic roots

14 To understand the living cell
25000 genomes… What’s Next ? The “post-genomics” era Systems Biology Annotation Comparative genomics Functional genomics Main Goal: To understand the living cell

15 To…Understanding living cells
From … genomes To…Understanding living cells

16 Annotation CCTGACAAATTCGACGTGCGGCATTGCATGCAGACGTGCATG
CGTGCAAATAATCAATGTGGACTTTTCTGCGATTATGGAAGAA CTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTC AGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGA AGAGCCAGTAAAAGACGCAGTGACGGAGATGTCTGATG CAA TAT GGA CAA TTG GTT TCT TCT CTG AAT TGAAAAACGTA

17 Annotation Identify the genes within a given sequence of DNA
Identify the sites Which regulate the gene Annotation Predict the function

18 How do we identify a gene in a genome?
A gene is characterized by several features (promoter, ORF…) some are easier and some harder to detect…

19 promoter TF binding site Transcription Start Site
Ribosome binding Site ORF=Open Reading Frame CDS=Coding Sequence Transcription Start Site CCTGACAAATTCGACGTGCGGCATTGCATGCAGACGTGCATG CGTGCAAATAATCAATGTGGACTTTTCTGCGATTATGGAAGAA CTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTC AGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGA AGAGCCAGTAAAAGACGCAGTGACGGAGATGTCTGATG CAA TAT GGA CAA TTG GTT TCT TCT CTG AAT TGAAAAACGTA

20 Using Bioinformatics approaches for Gene hunting
Relative easy in simple organisms (e.g. bacteria) VERY HARD for higher organism (e.g. humans)

21 Comparative genomics

22 Perhaps not surprising!!!
How humans are chimps? Comparison between the full drafts of the human and chimp genomes revealed that they differ only by 1.23%

23 So where are we different ??
Human ATAGCGGGGGGATGCGGGCCCTATACCC Chimp ATAGGGGGGATGCGGGCCCTATACCC Mouse ATAGCGGGATGCGGCGCTATACCA Human ATAGCGGGGGGATGCGGGCCCTATACCC Chimp ATAGGGG--GGATGCGGGCCCTATACCC Mouse ATAGCG---GGATGCGGCGC-TATACC-A

24 And where are we similar ???
VERY SIMAILAR Conserved between many organisms VERY DIFFERENT

25 Functional genomics

26 TO BE IS NOT ENOUGH In any time point a gene can be functional or not

27 From the gene expression pattern we can lean:
What does the gene do ? When is it needed? What other genes or proteins interact with it? ….. What's wrong??

28 Systems Biology

29 Biological networks Jeong et al. Nature 411, (2001)

30 What can we learn from a network?
יחסים בין חברים למי יש מעגל חברים דומה לשלי (הרבה קשתות) או מעגל חברתי שונה משלי (מעט קשתות)

31 What can we learn from Biological Networks
What can we learn about this protein Is the protein essential for the organism ? Is it a good drug targets?

32 What of all this will we learn in the course?
The course will concentrate on the bioinformatics tools and databases which are used to : Annotate genes, Compare genes and genomes Infer the function of the genes and proteins Analyze the interactions between genes and proteins ETC….

33 Biological Databases The different types of data are collected in database Sequence databases Structural databases Databases of Experimental Results All databases are connected

34 Sequence databases Gene database Genome database
Disease related mutation database ………….

35 UCSC Genome Browser http://genome.ucsc.edu/
Genome Browsers Easy “walk” through the genome UCSC Genome Browser

36 Disease related database

37 Sickle Cell Anemia Due to 1 swapping an A for a T, causing inserted amino acid to be valine instead of glutamine in hemoglobin Image source:

38 Healthy Individual >gi| |ref|NM_ | Homo sapiens hemoglobin, beta (HBB), mRNA ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA GGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC >gi| |ref|NP_ | beta globin [Homo sapiens] MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN ALAHKYH

39 Diseased Individual >gi| |ref|NM_ | Homo sapiens hemoglobin, beta (HBB), mRNA ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA GGTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC >gi| |ref|NP_ | beta globin [Homo sapiens] MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN ALAHKYH

40 Structure Databases 3-dimensional structures of proteins, nucleic acids, molecular complexes etc 3-d data is available due to techniques such as NMR and X-Ray crystallography

41

42 Databases of Experimental Results
Data such as experimental microarray images- gene expression data Proteomic data- protein expression data Metabolic pathways, protein-protein interaction data, regulatory networks ETC………….

43 PubMed Literature Databases http://www.ncbi.nlm.nih.gov/pubmed/
Service of the National Library of Medicine

44 Putting it all Together
Each Database contains specific information Like other biological systems also these databases are interrelated

45 PROTEIN DISEASE ASSEMBLED GENOMES GENOMIC DATA ESTs GENES SNPs
PIR SWISS-PROT DISEASE LocusLink OMIM OMIA ASSEMBLED GENOMES GoldenPath WormBase TIGR MOTIFS BLOCKS Pfam Prosite GENOMIC DATA GenBank DDBJ EMBL ESTs dbEST unigene GENES RefSeq AllGenes GDB SNPs dbSNP GENE EXPRESSION Stanford MGDB NetAffx ArrayExpress PATHWAY KEGG COG STRUCTURE PDB MMDB SCOP LITERATURE PubMed


Download ppt "Introduction to Bioinformatics /234525"

Similar presentations


Ads by Google