Download presentation
Presentation is loading. Please wait.
1
5.5/5.6 – Double- and Half-Angle Identities
Math 150 5.5/5.6 – Double- and Half-Angle Identities
2
We can derive formulas for cos 2𝐴 , sin 2𝐴 , and tan 2𝐴 by using the addition identities: 𝐜𝐨𝐬 𝟐𝑨 = cos 𝐴+𝐴 = cos 𝐴 cos 𝐴 − sin 𝐴 sin 𝐴 = 𝐜𝐨𝐬 𝟐 𝑨 − 𝐬𝐢𝐧 𝟐 𝑨
3
We can derive formulas for cos 2𝐴 , sin 2𝐴 , and tan 2𝐴 by using the addition identities: 𝐜𝐨𝐬 𝟐𝑨 = cos 𝐴+𝐴 = cos 𝐴 cos 𝐴 − sin 𝐴 sin 𝐴 = 𝐜𝐨𝐬 𝟐 𝑨 − 𝐬𝐢𝐧 𝟐 𝑨
4
We can derive formulas for cos 2𝐴 , sin 2𝐴 , and tan 2𝐴 by using the addition identities: 𝐜𝐨𝐬 𝟐𝑨 = cos 𝐴+𝐴 = cos 𝐴 cos 𝐴 − sin 𝐴 sin 𝐴 = 𝐜𝐨𝐬 𝟐 𝑨 − 𝐬𝐢𝐧 𝟐 𝑨
5
We can derive formulas for cos 2𝐴 , sin 2𝐴 , and tan 2𝐴 by using the addition identities: 𝐜𝐨𝐬 𝟐𝑨 = cos 𝐴+𝐴 = cos 𝐴 cos 𝐴 − sin 𝐴 sin 𝐴 = 𝐜𝐨𝐬 𝟐 𝑨 − 𝐬𝐢𝐧 𝟐 𝑨
6
𝐬𝐢𝐧 𝟐𝑨 = sin 𝐴+𝐴 = sin 𝐴 cos 𝐴 + cos 𝐴 sin 𝐴 =𝟐 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐭𝐚𝐧 𝟐𝑨 = tan 𝐴+𝐴 = tan 𝐴 + tan 𝐴 1− tan 𝐴 tan 𝐴 = 𝟐 𝐭𝐚𝐧 𝑨 𝟏− 𝐭𝐚𝐧 𝟐 𝑨
7
𝐬𝐢𝐧 𝟐𝑨 = sin 𝐴+𝐴 = sin 𝐴 cos 𝐴 + cos 𝐴 sin 𝐴 =𝟐 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐭𝐚𝐧 𝟐𝑨 = tan 𝐴+𝐴 = tan 𝐴 + tan 𝐴 1− tan 𝐴 tan 𝐴 = 𝟐 𝐭𝐚𝐧 𝑨 𝟏− 𝐭𝐚𝐧 𝟐 𝑨
8
𝐬𝐢𝐧 𝟐𝑨 = sin 𝐴+𝐴 = sin 𝐴 cos 𝐴 + cos 𝐴 sin 𝐴 =𝟐 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐭𝐚𝐧 𝟐𝑨 = tan 𝐴+𝐴 = tan 𝐴 + tan 𝐴 1− tan 𝐴 tan 𝐴 = 𝟐 𝐭𝐚𝐧 𝑨 𝟏− 𝐭𝐚𝐧 𝟐 𝑨
9
𝐬𝐢𝐧 𝟐𝑨 = sin 𝐴+𝐴 = sin 𝐴 cos 𝐴 + cos 𝐴 sin 𝐴 =𝟐 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐭𝐚𝐧 𝟐𝑨 = tan 𝐴+𝐴 = tan 𝐴 + tan 𝐴 1− tan 𝐴 tan 𝐴 = 𝟐 𝐭𝐚𝐧 𝑨 𝟏− 𝐭𝐚𝐧 𝟐 𝑨
10
𝐬𝐢𝐧 𝟐𝑨 = sin 𝐴+𝐴 = sin 𝐴 cos 𝐴 + cos 𝐴 sin 𝐴 =𝟐 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐭𝐚𝐧 𝟐𝑨 = tan 𝐴+𝐴 = tan 𝐴 + tan 𝐴 1− tan 𝐴 tan 𝐴 = 𝟐 𝐭𝐚𝐧 𝑨 𝟏− 𝐭𝐚𝐧 𝟐 𝑨
11
𝐬𝐢𝐧 𝟐𝑨 = sin 𝐴+𝐴 = sin 𝐴 cos 𝐴 + cos 𝐴 sin 𝐴 =𝟐 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐭𝐚𝐧 𝟐𝑨 = tan 𝐴+𝐴 = tan 𝐴 + tan 𝐴 1− tan 𝐴 tan 𝐴 = 𝟐 𝐭𝐚𝐧 𝑨 𝟏− 𝐭𝐚𝐧 𝟐 𝑨
12
𝐬𝐢𝐧 𝟐𝑨 = sin 𝐴+𝐴 = sin 𝐴 cos 𝐴 + cos 𝐴 sin 𝐴 =𝟐 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐭𝐚𝐧 𝟐𝑨 = tan 𝐴+𝐴 = tan 𝐴 + tan 𝐴 1− tan 𝐴 tan 𝐴 = 𝟐 𝐭𝐚𝐧 𝑨 𝟏− 𝐭𝐚𝐧 𝟐 𝑨
13
𝐬𝐢𝐧 𝟐𝑨 = sin 𝐴+𝐴 = sin 𝐴 cos 𝐴 + cos 𝐴 sin 𝐴 =𝟐 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐭𝐚𝐧 𝟐𝑨 = tan 𝐴+𝐴 = tan 𝐴 + tan 𝐴 1− tan 𝐴 tan 𝐴 = 𝟐 𝐭𝐚𝐧 𝑨 𝟏− 𝐭𝐚𝐧 𝟐 𝑨
14
Double-Angle Identities cos 2𝐴 = cos 2 𝐴 − sin 2 𝐴 cos 2𝐴 =1−2 sin 2 𝐴 cos 2𝐴 =2 cos 2 𝐴 −1 sin 2𝐴 =2 sin 𝐴 cos 𝐴 tan 2𝐴 = 2 tan 𝐴 1− tan 2 𝐴
15
Ex 1. Given cos 𝜃 = 3 5 and sin 𝜃 <0, find sin 2𝜃 .
16
Ex 2. Find cot 𝜃 if cos 2𝜃 = 4 5 and 90 ∘ <𝜃< 180 ∘ .
17
Ex 3. Verify that the following equation is an identity
Ex 3. Verify that the following equation is an identity. cot 𝑥 sin 2𝑥 =1+ cos 2𝑥
18
Ex 4. Write cos 3𝑥 in terms of cos 𝑥 .
19
We can derive a formula for sin 𝐴 2 by using the double angle identity for cos 2𝑥 : cos 2𝑥 =1−2 sin 2 𝑥 2 sin 2 𝑥 =1− cos 2𝑥 sin 𝑥 =± 1− cos 2𝑥 2 sin 𝐴 2 =± 1− cos 𝐴 2
20
We can derive a formula for sin 𝐴 2 by using the double angle identity for cos 2𝑥 : cos 2𝑥 =1−2 sin 2 𝑥 2 sin 2 𝑥 =1− cos 2𝑥 sin 𝑥 =± 1− cos 2𝑥 2 sin 𝐴 2 =± 1− cos 𝐴 2
21
We can derive a formula for sin 𝐴 2 by using the double angle identity for cos 2𝑥 : cos 2𝑥 =1−2 sin 2 𝑥 2 sin 2 𝑥 =1− cos 2𝑥 sin 𝑥 =± 1− cos 2𝑥 2 sin 𝐴 2 =± 1− cos 𝐴 2
22
We can derive a formula for sin 𝐴 2 by using the double angle identity for cos 2𝑥 : cos 2𝑥 =1−2 sin 2 𝑥 2 sin 2 𝑥 =1− cos 2𝑥 sin 𝑥 =± 1− cos 2𝑥 2 sin 𝐴 2 =± 1− cos 𝐴 2
23
We can derive a formula for sin 𝐴 2 by using the double angle identity for cos 2𝑥 : cos 2𝑥 =1−2 sin 2 𝑥 2 sin 2 𝑥 =1− cos 2𝑥 sin 𝑥 =± 1− cos 2𝑥 2 sin 𝐴 2 =± 1− cos 𝐴 2
24
Half-Angle Identities sin 𝐴 2 =± 1− cos 𝐴 2 cos 𝐴 2 =± 1+ cos 𝐴 2 tan 𝐴 2 =± 1− cos 𝐴 1+ cos 𝐴 tan 𝐴 2 = sin 𝐴 1+ cos 𝐴 tan 𝐴 2 = 1− cos 𝐴 sin 𝐴
25
Ex 5. Find the exact value of tan 22.5 ∘ .
26
Ex 6. Given cos 𝑥 =− 3 7 and 𝜋<𝑥< 3𝜋 2 , find sin 𝑥 2 .
27
Ex 7. Verify that the following equation is an identity
Ex 7. Verify that the following equation is an identity. sin 𝑥 2 + cos 𝑥 2 2 =1+ sin 𝑥
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.