Download presentation
Presentation is loading. Please wait.
1
CS 584
2
Message Passing Based on multi-processor
Set of independent processors Connected via some communication net All communication between processes is done via a message sent from one to the other
3
MPI Message Passing Interface Computation is made of:
One or more processes Communicate by calling library routines MIMD programming model SPMD most common.
4
MPI Processes use point-to-point communication operations
Collective communication operations are also available. Communication can be modularized by the use of communicators. MPI_COMM_WORLD is the base. Used to identify subsets of processors
5
MPI Complex, but most problems can be solved using the 6 basic functions. MPI_Init MPI_Finalize MPI_Comm_size MPI_Comm_rank MPI_Send MPI_Recv
6
MPI Basics Most all calls require a communicator handle as an argument. MPI_COMM_WORLD MPI_Init and MPI_Finalize don’t require a communicator handle used to begin and end and MPI program MUST be called to begin and end
7
MPI Basics MPI_Comm_size MPI_Comm_rank
determines the number of processors in the communicator group MPI_Comm_rank determines the integer identifier assigned to the current process zero based
8
MPI Basics #include <stdio.h> #include <mpi.h>
main(int argc, char *argv[]) { int iproc, nproc; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &nproc); MPI_Comm_rank(MPI_COMM_WORLD, &iproc); printf("I am processor %d of %d\n", iproc, nproc); MPI_Finalize(); }
9
MPI Communication MPI_Send MPI_Recv Sends an array of a given type
Requires a destination node, size, and type MPI_Recv Receives an array of a given type Same requirements as MPI_Send Extra parameter MPI_Status variable.
11
MPI Basics Made for both FORTRAN and C Standards for C
MPI_ prefix to all calls First letter of function name is capitalized Returns MPI_SUCCESS or error code MPI_Status structure MPI data types for each C type
12
Using MPI Based on rsh Path to compiler requires a .rhosts file
hostname login Path to compiler MPI_HOME /users/faculty/snell/mpich MPI_CC MPI_HOME/bin/mpicc
13
Using MPI Write program Compile using mpicc Write process file
host nprocs full_path_to_prog 0 for nprocs on first line 1 for all others Run program prog -p4pg process_file args mpirun –np #procs –machinefile machines prog
14
Example HINT benchmark Found at /users/faculty/snell/CS584/HINT
15
#include “mpi.h” #include <stdio.h> #include <math.h> #define MAXSIZE 1000 void main(int argc, char *argv) { int myid, numprocs; int data[MAXSIZE], i, x, low, high, myresult, result; char fn[255]; char *fp; MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WORLD,&numprocs); MPI_Comm_rank(MPI_COMM_WORLD,&myid); if (myid == 0) { /* Open input file and initialize data */ strcpy(fn,getenv(“HOME”)); strcat(fn,”/MPI/rand_data.txt”); if ((fp = fopen(fn,”r”)) == NULL) { printf(“Can’t open the input file: %s\n\n”, fn); exit(1); } for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, &data[i]); /* broadcast data */ MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD); /* Add my portion Of data */ x = n/nproc; low = myid * x; high = low + x; for(i = low; i < high; i++) myresult += data[i]; printf(“I got %d from %d\n”, myresult, myid); /* Compute global sum */ MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD); if (myid == 0) printf(“The sum is %d.\n”, result); MPI_Finalize();
16
MPI Message Passing programs are non-deterministic because of concurrency Consider 2 processes sending messages to third MPI does guarantee that 2 messages sent from a single process to another will arrive in order. It is the programmer's responsibility to ensure computation determinism
17
MPI & Determinism MPI Non-Determinism MPI_ANY_SOURCE or MPI_ANY_TAG
A Process may specify the source of the message A Process may specify the type of message Non-Determinism MPI_ANY_SOURCE or MPI_ANY_TAG
18
Example for (n = 0; n < nproc/2; n++) {
MPI_Send(buff, BSIZE, MPI_FLOAT, rnbor, 1, MPI_COMM_WORLD); MPI_Recv(buff, BSIZE, MPI_FLOAT, MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status); /* Process the data */ }
19
Global Operations Coordinated communication involving multiple processes. Can be implemented by the programmer using sends and receives For convenience, MPI provides a suite of collective communication functions.
20
Collective Communication
Barrier Synchronize all processes Broadcast Gather Gather data from all processes to one process Scatter Reduction Global sums, products, etc.
21
Collective Communication
22
MPI_Reduce MPI_Reduce(inbuf, outbuf, count, type, op, root, comm)
23
MPI_Reduce
24
MPI_Allreduce MPI_Allreduce(inbuf, outbuf, count, type, op, root, comm)
25
Distribute Problem Size Distribute Input data Exchange Boundary values Find Max Error Collect Results
26
Other MPI Features Asynchronous Communication Modularity
MPI_ISend MPI_Wait and MPI_Test MPI_Probe and MPI_Get_count Modularity Communicator creation routines Derived Datatypes
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.