Download presentation
Presentation is loading. Please wait.
1
REVIEW PROBLEMS FOR TEST 1 PART 3
CALCULUS III REVIEW PROBLEMS FOR TEST 1 PART 3 SECTIONS/PROBLEMS: 12.2 (7), 12.3 (5, 23, 26, 64), 12.4 (3), 12.5 (5,26) 13.2 (42), 13.4 (5), 13.3 (5), 16.2 (34), 14.1 (10, 15), 14.3 (61), 14.4 (11) Dr. Vladimir Visnjic
2
SECTION 12.2 a + b = 2c โ ๐= ๐+ ๐ ๐ b โ a = 2d โ ๐= ๐โ๐ ๐
3
SECTION 12.3 5. Find ๐โ๐ where ๐=<4, 1, 1 4 > and ๐=<6, โ3โ8>. ๐โ๐=4โ6โ3โ 1 4 โ8=24โ3โ2=19 23. Determine whether the given vectors are orthogonal, parallel, or neither. (a) ๐=<9, 3>, ๐=<โ2, 6> ๐โ๐=9โ โ2 +3โ6=โ18+18=0 The vectors are orthogonal. (b) ๐=<4, 5, โ2>, ๐=<3,โ1, 5> ๐โ๐=12โ5โ10=โ3 The vectors are neither orthogonal nor parallel (c) a = โ 8i + 12j + 4k, b = 6i โ 9j โ 3k The vectors are scalar multiples of each other: b =โ 3 4 ๐. They are parallel. (d) a = 3i โ j + 3k, b = 5i + 9j โ 2k ๐โ๐=3โ5โ9 โ6=15โ15=0 The vectors are orthogonal.
4
26. Find the values of x such that the angle between the vectors <2, 1,โ1>, and <1,๐ฅ,0> is ฯ/4. cos ๐ 4 = <2, 1,โ1>โ<1,๐ฅ,0> <2, 1,โ1> |<1,๐ฅ,0>| = 2+๐ฅ ๐ฅ 2 1= 2+๐ฅ ๐ฅ 2 Cross-multiply, square both sides and simplify: ๐ฅ 2 โ4๐ฅโ1=0 The solutions of this equation are ๐ฅ= and ๐ฅ= 2โ
5
64. Show that if u + v and u โ v are orthogonal, then the vectors u and v must have the same length.
If u + v and u โ v are orthogonal, their dot product is zero: ๐ฎ+๐ฏ โ ๐ฎโ๐ฏ =0 Compute the dot product: ๐ฎ+๐ฏ โ ๐ฎโ๐ฏ =๐ฎโ๐ฎโ๐ฎโ๐ฏ+๐ฏโ๐ฎโ๐ฏโ๐ฏ= ๐ฎ 2 โ ๐ฏ 2 Here we used the properties that the dot product commutes, ๐ฎโ๐ฏ= ๐ฏโ๐ฎ, and that ๐ฎโ๐ฎ= ๐ฎ 2 . ๐ฎ 2 โ ๐ฏ 2 =0 ๐ฎ 2 = ๐ฏ 2 Since the magnitudes of the vectors cannot be negative, it follows that ๐ฎ = ๐ฏ .
6
SECTION 12.4 3. Find the cross product ๐ร๐ and verify that it is orthogonal to both a and b. a = 2j โ 4k, b = โ i + 3j + k ๐ร๐= ๐ข ๐ฃ ๐ค 0 โ โ =๐ข 2 โ โ๐ฃ 0 โ4 โ1 1 +๐ค 0 2 โ1 3 =14๐ข+4๐ฃ+2๐ค Verify that ๐ร๐ is orthogonal to both a and b: ๐โ ๐ร๐ =2โ4โ4โ2=0 ๏ผ ๐โ ๐ร๐ =โ14+3โ4+2=0 ๏ผ
7
๐ซ=<1, 0, 6>+๐ก<1, 3, 1>,
SECTION 12.5 5. Find the vector equation and parametric equations for the line through the point (1, 0, 6) and perpendicular to the plane ๐ฅ+3๐ฆ+๐ง= The normal vector of the plane ๐ง=<1, 3, 1>. Since the line is perpendicular to the plane, the vector v of the line can be set equal to n. With the point (1, 0, 6), the vector equation of the line is ๐ซ=<1, 0, 6>+๐ก<1, 3, 1>, and the parametric equations are ๐ฅ=1+๐ก, ๐ฆ=3๐ก, ๐ง=6+๐ก
8
SECTION 12.5 26. Find an equation of the plane through the point (2, 0, 1) and perpendicular to the line ๐ฅ=3๐ก, ๐ฆ=2โ๐ก, ๐ง=3+4๐ก. The direction vector of the line ๐ฏ=<3, โ1, 4>. Since the plane is perpendicular to the line, the normal vector n of the plane can be set equal to v. With the point (2, 0, 1), the plane equation is 3 ๐ฅโ2 โ ๐ฆโ0 +4 ๐งโ1 =0, or, in the form ax + by + cz = d, 3๐ฅโ๐ฆ+4๐ง=10.
9
๐ซ ๐ก =(1+ ๐ก 2 2 ) ๐ข+ ๐ ๐ก ๐ฃ+ ๐ก ๐ ๐ก โ ๐ ๐ก +2 ๐ค.
SECTION 13.2 42. Find r(t) if rโ(t) = t i + ๐ ๐ก ๐ฃ+๐ก ๐ ๐ก ๐ค and ๐ซ 0 =๐ข+๐ฃ+๐ค. ๐ซ ๐ก = ๐ซโ ๐ก ๐๐ก= ๐ก ๐ข + ๐ ๐ก ๐ฃ+๐ก ๐ ๐ก ๐ค ๐๐ก = ๐ก ๐ข+ ๐ ๐ก ๐ฃ+ ๐ก ๐ ๐ก โ ๐ ๐ก ๐ค+๐ where C is the integration constant which here can be determined from the given initial condition: ๐ซ 0 =๐ฃโ๐ค+๐=๐ข+๐ฃ+๐ค. From this, C = i + 2k and ๐ซ ๐ก =(1+ ๐ก 2 2 ) ๐ข+ ๐ ๐ก ๐ฃ+ ๐ก ๐ ๐ก โ ๐ ๐ก +2 ๐ค.
10
13.4 ย 5 . Find the velocity, acceleration, and speed of a particle with the position function r(t) =3 cos t i +2 sin t ๐ฃ. Sketch the path of the particle and draw the velocity and acceleration vectors for t = ฯ/3. (Note: Make sure to draw these vectors at the point on the path for t = ฯ/3 and not at the origin.) ย ๐ฏ= ๐ซ โฒ ๐ก =โ3 sin ๐ก ๐ข+2 cos ๐ก ๐ฃ ๐ t =๐ฏ โฒ t = ๐ซ โฒโฒ (t) = โ3 cos t i โ2 sin t ๐ฃ speed = ๐ฏ ๐ก = 9 sin 2 ๐ก+4 cos 2 ๐ก = 4+5 sin 2 ๐ก Sketching: Path: ๐ฅ=3 cos ๐ก, ๐ฆ=2 sin ๐ก are parametric equations of the ellipse with the semiaxis 3 along the x axis and 2 along the y axis. For t = ฯ/3, the particle is at the point x = 3/2, y = Velocity: ๐ฏ( ๐ 3)=โ ๐ข+๐ฃ Acceleration: ๐( ๐ 3)=โ ๐ขโ 3 ๐ฃ
11
5 . Find the length of the curve ๐ซ ๐ก =๐ข+ ๐ก 2 ๐ฃ+ ๐ก 3 ๐ค, 0โค๐กโค1.
SECTION 13.3 5 . Find the length of the curve ๐ซ ๐ก =๐ข+ ๐ก 2 ๐ฃ+ ๐ก 3 ๐ค, 0โค๐กโค1. ๐ฟ= ๐๐ฅ ๐๐ก ๐๐ฆ ๐๐ก ๐๐ง ๐๐ก ๐๐ก ๐๐ฅ ๐๐ก =0, ๐๐ฆ ๐๐ก =2๐ก, ๐๐ง ๐๐ก =3 ๐ก 2 ๐ฟ= ๐ก ๐ก 4 ๐๐ก= 0 1 ๐ก 4+9 ๐ก 2 ๐๐ก= 1 27 ( โ8) u-substitution: u = ๐ก 2 , du = 18 t dt: ๐ข ๐๐ข= ๐ข | 13 4
12
= 0 ๐ 2 ๐ ๐ 2 sin ๐ก cos ๐ก ๐ 2 sin 2 ๐ก+ ๐ 2 cos 2 ๐ก ๐๐ก
SECTION 16.2 34. A thin wire has the shape of the first quadrant part of the circle with center the origin and radius a. If the density function is ฯ(x, y) = kxy, find the mass of the wire. Parametric equations of the first quadrant part of the circle with center the origin and radius a are ๐ฅ=๐ cos ๐ก, ๐ฆ=๐ sin ๐ก, 0โค๐กโค ๐ 2 ๐= 0 ๐ 2 ๐(๐ฅ, ๐ฆ) ๐๐ฅ ๐๐ก ๐๐ฆ ๐๐ก 2 ๐๐ก = 0 ๐ 2 ๐ ๐ 2 sin ๐ก cos ๐ก ๐ 2 sin 2 ๐ก+ ๐ 2 cos 2 ๐ก ๐๐ก = ๐ ๐ ๐ 2 sin ๐ก cos ๐ก ๐๐ก = ๐ ๐ 3
15
SECTION 14.3 61. Verify that the conclusion of Clairautโs Theorem holds for ๐ข= cos ( ๐ฅ 2 ๐ฆ) , that is, ๐ข ๐ฅ๐ฆ = ๐ข ๐ฆ๐ฅ ๐ข ๐ฅ =โ2 ๐ฅ๐ฆ sin (๐ฅ 2 ๐ฆ) ๐ข ๐ฅ๐ฆ = โ2๐ฅ sin ( ๐ฅ 2 ๐ฆ) โ2 ๐ฅ 3 ๐ฆ cos ( ๐ฅ 2 ๐ฆ) ๐ข ๐ฆ = โ ๐ฅ 2 sin ( ๐ฅ 2 ๐ฆ) ๐ข ๐ฆ๐ฅ =โ2๐ฅ sin ๐ฅ 2 ๐ฆ โ2 ๐ฅ 3 ๐ฆ cos ๐ฅ 2 ๐ฆ
16
SECTION 14.4 11. Find the linearization L(x, y) of ๐ ๐ฅ,๐ฆ =1+๐ฅ ln (๐ฅ๐ฆโ5) at the point (2, 3).
The first partial derivatives of f(x, y) are ๐ ๐ฅ ๐ฅ,๐ฆ = ln ๐ฅ๐ฆโ5 + ๐ฅ๐ฆ ๐ฅ๐ฆโ and ๐ ๐ฆ ๐ฅ, ๐ฆ = ๐ฅ 2 ๐ฅ๐ฆโ5 At the point (2, 3) their values are ๐ ๐ฅ 2,3 =6 and ๐ ๐ฆ 2,3 =4. The linearization of f(x, y) at the point (2, 3) is ๐ฟ ๐ฅ,๐ฆ =๐ 2,3 + ๐ ๐ฅ 2,3 ๐ฅโ2 + ๐ ๐ฆ (2,3)(๐ฆโ3) ๐ฟ ๐ฅ,๐ฆ =1+6 ๐ฅโ2 +4(๐ฆโ3) ๐ฟ ๐ฅ,๐ฆ =6๐ฅ+4๐ฆโ23
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.