Presentation is loading. Please wait.

Presentation is loading. Please wait.

REVIEW PROBLEMS FOR TEST 1 PART 3

Similar presentations


Presentation on theme: "REVIEW PROBLEMS FOR TEST 1 PART 3"โ€” Presentation transcript:

1 REVIEW PROBLEMS FOR TEST 1 PART 3
CALCULUS III REVIEW PROBLEMS FOR TEST 1 PART 3 SECTIONS/PROBLEMS: 12.2 (7), 12.3 (5, 23, 26, 64), 12.4 (3), 12.5 (5,26) 13.2 (42), 13.4 (5), 13.3 (5), 16.2 (34), 14.1 (10, 15), 14.3 (61), 14.4 (11) Dr. Vladimir Visnjic

2 SECTION 12.2 a + b = 2c โ‡’ ๐œ= ๐š+ ๐› ๐Ÿ b โ€“ a = 2d โ‡’ ๐= ๐›โˆ’๐š ๐Ÿ

3 SECTION 12.3 5. Find ๐šโˆ™๐› where ๐š=<4, 1, 1 4 > and ๐›=<6, โˆ’3โˆ’8>. ๐šโˆ™๐›=4โˆ™6โˆ’3โˆ’ 1 4 โˆ™8=24โˆ’3โˆ’2=19 23. Determine whether the given vectors are orthogonal, parallel, or neither. (a) ๐š=<9, 3>, ๐›=<โˆ’2, 6> ๐šโˆ™๐›=9โˆ™ โˆ’2 +3โˆ™6=โˆ’18+18=0 The vectors are orthogonal. (b) ๐š=<4, 5, โˆ’2>, ๐›=<3,โˆ’1, 5> ๐šโˆ™๐›=12โˆ’5โˆ’10=โˆ’3 The vectors are neither orthogonal nor parallel (c) a = โˆ’ 8i + 12j + 4k, b = 6i โˆ’ 9j โˆ’ 3k The vectors are scalar multiples of each other: b =โˆ’ 3 4 ๐š. They are parallel. (d) a = 3i โˆ’ j + 3k, b = 5i + 9j โˆ’ 2k ๐šโˆ™๐›=3โˆ™5โˆ’9 โˆ’6=15โˆ’15=0 The vectors are orthogonal.

4 26. Find the values of x such that the angle between the vectors <2, 1,โˆ’1>, and <1,๐‘ฅ,0> is ฯ€/4. cos ๐œ‹ 4 = <2, 1,โˆ’1>โˆ™<1,๐‘ฅ,0> <2, 1,โˆ’1> |<1,๐‘ฅ,0>| = 2+๐‘ฅ ๐‘ฅ 2 1= 2+๐‘ฅ ๐‘ฅ 2 Cross-multiply, square both sides and simplify: ๐‘ฅ 2 โˆ’4๐‘ฅโˆ’1=0 The solutions of this equation are ๐‘ฅ= and ๐‘ฅ= 2โˆ’

5 64. Show that if u + v and u โ€“ v are orthogonal, then the vectors u and v must have the same length.
If u + v and u โ€“ v are orthogonal, their dot product is zero: ๐ฎ+๐ฏ โˆ™ ๐ฎโˆ’๐ฏ =0 Compute the dot product: ๐ฎ+๐ฏ โˆ™ ๐ฎโˆ’๐ฏ =๐ฎโˆ™๐ฎโˆ’๐ฎโˆ™๐ฏ+๐ฏโˆ™๐ฎโˆ’๐ฏโˆ™๐ฏ= ๐ฎ 2 โˆ’ ๐ฏ 2 Here we used the properties that the dot product commutes, ๐ฎโˆ™๐ฏ= ๐ฏโˆ™๐ฎ, and that ๐ฎโˆ™๐ฎ= ๐ฎ 2 . ๐ฎ 2 โˆ’ ๐ฏ 2 =0 ๐ฎ 2 = ๐ฏ 2 Since the magnitudes of the vectors cannot be negative, it follows that ๐ฎ = ๐ฏ .

6 SECTION 12.4 3. Find the cross product ๐šร—๐› and verify that it is orthogonal to both a and b. a = 2j โ€“ 4k, b = โ€“ i + 3j + k ๐šร—๐›= ๐ข ๐ฃ ๐ค 0 โˆ’ โˆ’ =๐ข 2 โˆ’ โˆ’๐ฃ 0 โˆ’4 โˆ’1 1 +๐ค 0 2 โˆ’1 3 =14๐ข+4๐ฃ+2๐ค Verify that ๐šร—๐› is orthogonal to both a and b: ๐šโˆ™ ๐šร—๐› =2โˆ™4โˆ’4โˆ™2=0 ๏ƒผ ๐›โˆ™ ๐šร—๐› =โˆ’14+3โˆ™4+2=0 ๏ƒผ

7 ๐ซ=<1, 0, 6>+๐‘ก<1, 3, 1>,
SECTION 12.5 5. Find the vector equation and parametric equations for the line through the point (1, 0, 6) and perpendicular to the plane ๐‘ฅ+3๐‘ฆ+๐‘ง= The normal vector of the plane ๐ง=<1, 3, 1>. Since the line is perpendicular to the plane, the vector v of the line can be set equal to n. With the point (1, 0, 6), the vector equation of the line is ๐ซ=<1, 0, 6>+๐‘ก<1, 3, 1>, and the parametric equations are ๐‘ฅ=1+๐‘ก, ๐‘ฆ=3๐‘ก, ๐‘ง=6+๐‘ก

8 SECTION 12.5 26. Find an equation of the plane through the point (2, 0, 1) and perpendicular to the line ๐‘ฅ=3๐‘ก, ๐‘ฆ=2โˆ’๐‘ก, ๐‘ง=3+4๐‘ก. The direction vector of the line ๐ฏ=<3, โˆ’1, 4>. Since the plane is perpendicular to the line, the normal vector n of the plane can be set equal to v. With the point (2, 0, 1), the plane equation is 3 ๐‘ฅโˆ’2 โˆ’ ๐‘ฆโˆ’0 +4 ๐‘งโˆ’1 =0, or, in the form ax + by + cz = d, 3๐‘ฅโˆ’๐‘ฆ+4๐‘ง=10.

9 ๐ซ ๐‘ก =(1+ ๐‘ก 2 2 ) ๐ข+ ๐‘’ ๐‘ก ๐ฃ+ ๐‘ก ๐‘’ ๐‘ก โˆ’ ๐‘’ ๐‘ก +2 ๐ค.
SECTION 13.2 42. Find r(t) if rโ€™(t) = t i + ๐‘’ ๐‘ก ๐ฃ+๐‘ก ๐‘’ ๐‘ก ๐ค and ๐ซ 0 =๐ข+๐ฃ+๐ค. ๐ซ ๐‘ก = ๐ซโ€™ ๐‘ก ๐‘‘๐‘ก= ๐‘ก ๐ข + ๐‘’ ๐‘ก ๐ฃ+๐‘ก ๐‘’ ๐‘ก ๐ค ๐‘‘๐‘ก = ๐‘ก ๐ข+ ๐‘’ ๐‘ก ๐ฃ+ ๐‘ก ๐‘’ ๐‘ก โˆ’ ๐‘’ ๐‘ก ๐ค+๐‚ where C is the integration constant which here can be determined from the given initial condition: ๐ซ 0 =๐ฃโˆ’๐ค+๐‚=๐ข+๐ฃ+๐ค. From this, C = i + 2k and ๐ซ ๐‘ก =(1+ ๐‘ก 2 2 ) ๐ข+ ๐‘’ ๐‘ก ๐ฃ+ ๐‘ก ๐‘’ ๐‘ก โˆ’ ๐‘’ ๐‘ก +2 ๐ค.

10 13.4 ย 5 . Find the velocity, acceleration, and speed of a particle with the position function r(t) =3 cos t i +2 sin t ๐ฃ. Sketch the path of the particle and draw the velocity and acceleration vectors for t = ฯ€/3. (Note: Make sure to draw these vectors at the point on the path for t = ฯ€/3 and not at the origin.) ย ๐ฏ= ๐ซ โ€ฒ ๐‘ก =โˆ’3 sin ๐‘ก ๐ข+2 cos ๐‘ก ๐ฃ ๐š t =๐ฏ โ€ฒ t = ๐ซ โ€ฒโ€ฒ (t) = โˆ’3 cos t i โˆ’2 sin t ๐ฃ speed = ๐ฏ ๐‘ก = 9 sin 2 ๐‘ก+4 cos 2 ๐‘ก = 4+5 sin 2 ๐‘ก Sketching: Path: ๐‘ฅ=3 cos ๐‘ก, ๐‘ฆ=2 sin ๐‘ก are parametric equations of the ellipse with the semiaxis 3 along the x axis and 2 along the y axis. For t = ฯ€/3, the particle is at the point x = 3/2, y = Velocity: ๐ฏ( ๐œ‹ 3)=โˆ’ ๐ข+๐ฃ Acceleration: ๐š( ๐œ‹ 3)=โˆ’ ๐ขโˆ’ 3 ๐ฃ

11 5 . Find the length of the curve ๐ซ ๐‘ก =๐ข+ ๐‘ก 2 ๐ฃ+ ๐‘ก 3 ๐ค, 0โ‰ค๐‘กโ‰ค1.
SECTION 13.3 5 . Find the length of the curve ๐ซ ๐‘ก =๐ข+ ๐‘ก 2 ๐ฃ+ ๐‘ก 3 ๐ค, 0โ‰ค๐‘กโ‰ค1. ๐ฟ= ๐‘‘๐‘ฅ ๐‘‘๐‘ก ๐‘‘๐‘ฆ ๐‘‘๐‘ก ๐‘‘๐‘ง ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฅ ๐‘‘๐‘ก =0, ๐‘‘๐‘ฆ ๐‘‘๐‘ก =2๐‘ก, ๐‘‘๐‘ง ๐‘‘๐‘ก =3 ๐‘ก 2 ๐ฟ= ๐‘ก ๐‘ก 4 ๐‘‘๐‘ก= 0 1 ๐‘ก 4+9 ๐‘ก 2 ๐‘‘๐‘ก= 1 27 ( โˆ’8) u-substitution: u = ๐‘ก 2 , du = 18 t dt: ๐‘ข ๐‘‘๐‘ข= ๐‘ข | 13 4

12 = 0 ๐œ‹ 2 ๐‘˜ ๐‘Ž 2 sin ๐‘ก cos ๐‘ก ๐‘Ž 2 sin 2 ๐‘ก+ ๐‘Ž 2 cos 2 ๐‘ก ๐‘‘๐‘ก
SECTION 16.2 34. A thin wire has the shape of the first quadrant part of the circle with center the origin and radius a. If the density function is ฯ(x, y) = kxy, find the mass of the wire. Parametric equations of the first quadrant part of the circle with center the origin and radius a are ๐‘ฅ=๐‘Ž cos ๐‘ก, ๐‘ฆ=๐‘Ž sin ๐‘ก, 0โ‰ค๐‘กโ‰ค ๐œ‹ 2 ๐‘š= 0 ๐œ‹ 2 ๐œŒ(๐‘ฅ, ๐‘ฆ) ๐‘‘๐‘ฅ ๐‘‘๐‘ก ๐‘‘๐‘ฆ ๐‘‘๐‘ก 2 ๐‘‘๐‘ก = 0 ๐œ‹ 2 ๐‘˜ ๐‘Ž 2 sin ๐‘ก cos ๐‘ก ๐‘Ž 2 sin 2 ๐‘ก+ ๐‘Ž 2 cos 2 ๐‘ก ๐‘‘๐‘ก = ๐‘˜ ๐‘Ž ๐œ‹ 2 sin ๐‘ก cos ๐‘ก ๐‘‘๐‘ก = ๐‘˜ ๐‘Ž 3

13

14

15 SECTION 14.3 61. Verify that the conclusion of Clairautโ€™s Theorem holds for ๐‘ข= cos ( ๐‘ฅ 2 ๐‘ฆ) , that is, ๐‘ข ๐‘ฅ๐‘ฆ = ๐‘ข ๐‘ฆ๐‘ฅ ๐‘ข ๐‘ฅ =โˆ’2 ๐‘ฅ๐‘ฆ sin (๐‘ฅ 2 ๐‘ฆ) ๐‘ข ๐‘ฅ๐‘ฆ = โˆ’2๐‘ฅ sin ( ๐‘ฅ 2 ๐‘ฆ) โˆ’2 ๐‘ฅ 3 ๐‘ฆ cos ( ๐‘ฅ 2 ๐‘ฆ) ๐‘ข ๐‘ฆ = โˆ’ ๐‘ฅ 2 sin ( ๐‘ฅ 2 ๐‘ฆ) ๐‘ข ๐‘ฆ๐‘ฅ =โˆ’2๐‘ฅ sin ๐‘ฅ 2 ๐‘ฆ โˆ’2 ๐‘ฅ 3 ๐‘ฆ cos ๐‘ฅ 2 ๐‘ฆ

16 SECTION 14.4 11. Find the linearization L(x, y) of ๐‘“ ๐‘ฅ,๐‘ฆ =1+๐‘ฅ ln (๐‘ฅ๐‘ฆโˆ’5) at the point (2, 3).
The first partial derivatives of f(x, y) are ๐‘“ ๐‘ฅ ๐‘ฅ,๐‘ฆ = ln ๐‘ฅ๐‘ฆโˆ’5 + ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆโˆ’ and ๐‘“ ๐‘ฆ ๐‘ฅ, ๐‘ฆ = ๐‘ฅ 2 ๐‘ฅ๐‘ฆโˆ’5 At the point (2, 3) their values are ๐‘“ ๐‘ฅ 2,3 =6 and ๐‘“ ๐‘ฆ 2,3 =4. The linearization of f(x, y) at the point (2, 3) is ๐ฟ ๐‘ฅ,๐‘ฆ =๐‘“ 2,3 + ๐‘“ ๐‘ฅ 2,3 ๐‘ฅโˆ’2 + ๐‘“ ๐‘ฆ (2,3)(๐‘ฆโˆ’3) ๐ฟ ๐‘ฅ,๐‘ฆ =1+6 ๐‘ฅโˆ’2 +4(๐‘ฆโˆ’3) ๐ฟ ๐‘ฅ,๐‘ฆ =6๐‘ฅ+4๐‘ฆโˆ’23


Download ppt "REVIEW PROBLEMS FOR TEST 1 PART 3"

Similar presentations


Ads by Google