Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up Solve for x:

Similar presentations


Presentation on theme: "Warm Up Solve for x: "β€” Presentation transcript:

1 Warm Up Solve for x: πŸ“ 𝟐 πŸ”π’™βˆ’ πŸ‘ πŸ“ +πŸπ’™= 𝟏 πŸ’ 𝒙+πŸ– πŸ“ πŸ’ 𝒙+𝟐 =βˆ’πŸπŸ“
I can complete the unit circle Warm Up Solve for x: πŸ“ 𝟐 πŸ”π’™βˆ’ πŸ‘ πŸ“ +πŸπ’™= 𝟏 πŸ’ 𝒙+πŸ– πŸ“ πŸ’ 𝒙+𝟐 =βˆ’πŸπŸ“

2 Warm Up Solve for x: πŸ“ 𝟐 πŸ”π’™βˆ’ πŸ‘ πŸ“ +πŸπ’™= 𝟏 πŸ’ 𝒙+πŸ–

3 Warm Up Solve for x: πŸ“ πŸ’ 𝒙+𝟐 =βˆ’πŸπŸ“

4 Homework Questions

5 What is the Unit Circle?

6 Is there another way to solve?
Unit Circle Solve for 𝑦 sin 30 =𝑦 𝑦= 1 2 Solve for π‘₯ 60Β° cos 30 =π‘₯ π‘₯=.86660 Is there another way to solve? 1 𝑦 30Β° π‘₯

7 Unit Circle 1 2 2 + π‘₯ 2 = 1 2 Solve for π‘₯ 1 4 + π‘₯ 2 =1 π‘₯ 2 = 3 4
π‘₯ 2 = 1 2 1 4 + π‘₯ 2 =1 π‘₯ 2 = 3 4 π‘₯= 3 4 π‘₯= Solve for π‘₯ 60Β° 1 𝑦 30Β° π‘₯

8 What we know so far…

9 What we know so far… πŸ‘ 𝟐 𝟏 𝟐 πŸ‘πŸŽ

10 Unit Circle Solve for π‘₯ cos 45 =π‘₯ π‘₯= 45Β° 1 𝑦 45Β° π‘₯

11 Unit Circle Solve for π‘₯ Is there another way to solve for π‘₯?
π‘₯ 2 + 𝑦 2 = 1 2 π‘₯ 2 + π‘₯ 2 =1 2 π‘₯ 2 =1 π‘₯ 2 = 1 2 π‘₯= 1 2 π‘₯= 45Β° 1 π‘₯ 𝑦 45Β° π‘₯

12 Unit Circle Solve for π‘₯ cos 45 =π‘₯ π‘₯= 45Β° 1 𝑦 45Β° π‘₯

13 Unit Circle Solve for π‘₯ Is there another way to solve for π‘₯?
π‘₯ 2 + 𝑦 2 = 1 2 π‘₯ 2 + π‘₯ 2 =1 2 π‘₯ 2 =1 π‘₯ 2 = 1 2 π‘₯= 1 2 π‘₯= 45Β° 1 π‘₯ 𝑦 45Β° π‘₯

14 Unit Circle Solve for π‘₯ and 𝑦 π‘₯= 1 2 𝑦= 30Β° 1 𝑦 60Β° π‘₯

15 Unit Circle Using what we have discussed about patterns, try to fill in the first quadrant

16 What we know so far… 𝟐 𝟐 𝟐 𝟐 πŸ‘ 𝟐 𝟏 𝟐 πŸ’πŸ“ πŸ‘πŸŽ

17 Unit Circle Solve for π‘₯ and 𝑦 π‘₯= 1 2 𝑦= 30Β° 1 𝑦 60Β° π‘₯

18 What we know so far… 𝟎 𝟏 πŸ‘ 𝟐 πŸ—πŸŽ 𝟏 𝟐 𝟐 𝟐 𝟐 𝟐 πŸ”πŸŽ πŸ‘ 𝟐 𝟏 𝟐 πŸ’πŸ“ πŸ‘πŸŽ 𝟎 𝟏 𝟎

19 In this case, πœƒ, 𝑖𝑠 π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ π‘Žπ‘›π‘”π‘™π‘’, and the calculation gives the angle of rotation:
165Β° 180βˆ’πœƒΒ° 195Β° 360βˆ’πœƒΒ° 245Β° 180+πœƒΒ° πœƒΒ° 15Β°

20 Reference Angles A devious person created a new ride similar to The Screamer. On this ride, the circle rotates every 12Β°. At 12Β° a rider is 15 feet off the ground. What other angles is the rider the same distance from the ground? 180βˆ’12Β°=168Β° Β°=192Β° 360βˆ’12Β°=348Β°

21 Reference Angles A rider is 45 feet from the ground when the angle of rotation is 134Β°. What other angles is the rider the same distance from the ground? 180βˆ’πœƒΒ°=134Β° πœƒ= Β°=226Β° 360βˆ’46Β°=314Β°

22 Reference Angles A reference angle helps find repeating patterns in a circle.𝑖𝑓 πœƒΒ° is the given angle on the unit circle: the reference angle, 𝛼, will be: Quadrant II: 180βˆ’πœƒΒ° Quadrant III: 180+πœƒΒ° Quadrant IV: 360βˆ’πœƒΒ° } And the π‘ π‘–π‘›πœƒ π‘œπ‘Ÿ π‘π‘œπ‘ πœƒ is equal to sin 𝛼 π‘œπ‘Ÿ π‘π‘œπ‘ π›Ό

23 More on reference angles
A reference angle is always a 1st quadrant angle A reference angle is always positive Reference angles are always determined by measuring to the X-axis, NEVER to the Y-axis

24 Reference Angles Identify the reference angle for each angle (Hint what quadrant would the angle be in?): 133Β° 245Β° 18Β° 359Β° 47Β° 65Β° 18Β° 1Β°

25 Unit Circle Using what we have discussed about patterns and reference angles, try to fill in the rest of the unit circle keeping in mind when values are positive or negative based on the coordinate grid.

26 𝟎 𝟏 πŸ‘ 𝟐 𝟏 𝟐 πŸ—πŸŽ 𝟐 𝟐 𝟐 𝟐 𝟏𝟐𝟎 πŸ”πŸŽ πŸ‘ 𝟐 𝟏 𝟐 πŸπŸ‘πŸ“ πŸ’πŸ“ πŸπŸ“πŸŽ πŸ‘πŸŽ πŸπŸ–πŸŽ 𝟎

27 𝟎 𝟏 πŸ‘ 𝟐 βˆ’πŸ 𝟐 πŸ‘ 𝟐 𝟏 𝟐 πŸ—πŸŽ 𝟐 𝟐 𝟐 𝟐 βˆ’ 𝟐 𝟐 𝟐 𝟐 𝟏𝟐𝟎 πŸ”πŸŽ πŸ‘ 𝟐 βˆ’ πŸ‘ 𝟐 𝟏 𝟐 𝟏 𝟐 πŸπŸ‘πŸ“ πŸ’πŸ“ πŸπŸ“πŸŽ πŸ‘πŸŽ πŸπŸ–πŸŽ 𝟎 βˆ’πŸ 𝟎 𝟏 𝟎

28 πŸ‘πŸ”πŸŽ 𝟐𝟏𝟎 πŸ‘πŸ‘πŸŽ πŸπŸπŸ“ πŸ‘πŸπŸ“ πŸπŸ’πŸŽ πŸ‘πŸŽπŸŽ πŸπŸ•πŸŽ

29 πŸ‘πŸ”πŸŽ 𝟐𝟏𝟎 πŸ‘πŸ‘πŸŽ πŸπŸπŸ“ πŸ‘πŸπŸ“ βˆ’ πŸ‘ 𝟐 βˆ’πŸ 𝟐 πŸ‘ 𝟐 βˆ’πŸ 𝟐 πŸπŸ’πŸŽ πŸ‘πŸŽπŸŽ βˆ’ 𝟐 𝟐 βˆ’ 𝟐 𝟐 βˆ’ 𝟐 𝟐 𝟐 𝟐 βˆ’ πŸ‘ 𝟐 βˆ’πŸ 𝟐 βˆ’ πŸ‘ 𝟐 πŸπŸ•πŸŽ 𝟏 𝟐 𝟎 βˆ’πŸ

30 Notes: Unit Circle Points on the unit circle are (π‘π‘œπ‘ πœƒ, π‘ π‘–π‘›πœƒ) Find the exact value of sin⁑(150Β°) sin 150Β° = 1 2 Find the exact value of cos⁑(210Β°) cos 210Β° =βˆ’ 3 2

31 Homework Textbook: , , 8-67


Download ppt "Warm Up Solve for x: "

Similar presentations


Ads by Google