Download presentation
Presentation is loading. Please wait.
1
MINIMAL SO(10) SPLITS SUPERSYMMETRY*
Ilja Doršner Institut “Jožef Stefan”, Ljubljana September 11, 2008 *Borut Bajc, I.D. and Miha Nemevšek, arXiv:
2
OUTLINE THE MINIMAL SO(10) MODEL: MAIN FEATURES
LOW SCALE SUPERSYMMETRY (SUSY) AND ν MASS SPLIT SUSY AND ν MASS EXPERIMENTAL SIGNATURES CONCLUSIONS
3
MINIMAL SUSY SO(10) ― MSG(rand)U(nified)T(heory)*
REPRESENTATIONS: SUPERPOTENTIAL: (Important for fermion masses.) (Important for unification.) *T. E. Clark, T. K. Kuo and N. Nakagawa, Phys. Lett. B 115 (1982) 26; K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 70 (1993) 2845; C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, Phys. Lett. B 588 (2004) 196; …
4
PARAMETERS: (WY) 22 (17) vs. 15 3 + 12 3 up quark masses
3 down quark masses 3 charged lepton masses 3 (2) neutral lepton masses 3 CKM angles + 1 CKM phase 3 (2) PMNS angles + 3 PMNS (0) phases 22 (17) vs. 15
5
PARAMETERS: (WH) CONDITIONS*: … RELEVANT PARAMETERS*: tan β , MSUSY
, MSUSY RGEs: gauge coupling constants RGEs: Yukawa couplings *C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, Phys. Lett. B 588 (2004) 196.
6
UNIFICATION IN MINIMAL SO(10)
MSSM MSGUT MGUT ≈ 2 × 1016 GeV 102 GeV MSUSY MGUT (≡ M(X,Y))
7
MSSM: GAUGE COUPLING UNIFICATION
1(MZ) = ± 2(MZ) = ± 3(MZ) = ±
8
MSGUT: GAUGE COUPLING UNIFICATION*
? *B. Bajc et al, hep-ph/ ; C. S. Aulakh and S. K. Garg, hep-ph/ ; S. Bertolini, T. Schwetz and M. Malinsky, hep-ph/ ; …
9
FERMION MASSES IN MINIMAL SO(10)*
OUR CONVENTION: *B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, hep-ph/
10
TYPE I SEESAW ‹ΨD› ‹ΨD› vR ν (1,1,0) ν spin 1/2 2 ‹ΨD› 2/( ) vR
(Mn)ij νi νj ≡ spin 0 νi νj
11
TYPE II SEESAW vL (1,3,1) νi νj ( )ij vL νi νj
12
FERMION MASSES IN MINIMAL SO(10)*
*B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, hep-ph/
13
TYPE II CONTRIBUTION TO ν MASS
b–τ UNIFICATION PROTON DECAY (d = 6) UPPER BOUND ON ν MASS FROM PROTON STABILITY!
14
b AND τ MASSES IN GeV UNITS AT MGUT
b–τ UNIFICATION b AND τ MASSES IN GeV UNITS AT MGUT mb mt MSUSY = 1 TeV mb-mτ ≈ 0.25 × 109 eV FII (mb-mτ ) (mν)33 ≈ 0.05 eV tan (MZ ) THE MZ DATA ARE FROM hep-ph/ by I. D, P. P. Pérez and G. Rodrigo.
15
PROTON DECAY (d = 6) THEORY (p → π0 e+): EXPERIMENT:
16
LOW SCALE SUSY AND ν MASS
17
FITTING PROCEDURE
20
IMPORTANT FINDINGS : ― :
21
SPLIT SUSY* AND ν MASS RELEVANT STEPS:
i) We maximize FII in order to have a viable neutrino scale. This fixes x, m (MGUT), α, α, λ and η. ii) We check whether unification takes place by solving three equations for the running of gauge couplings for three unknowns ― gGUT, Mf and M½. iii) We run masses of quarks and charged leptons and the CKM parameters to MGUT for a given tanβ and perform numerical fit that also includes fitting of neutrino mass ratio m2/m3 as well as solar and atmospheric angles. *N. Arkani-Hamed and S. Dimopoulos, hep-ph/ ; G. F. Giudice and A. Romanino, hep-ph/
22
MGUT (≡ M(X,Y)) MGUT (≡ M(X,Y)) Mf MSUSY M½ 102 GeV 102 GeV low SUSY
split SUSY MSGUT MSGUT MGUT (≡ M(X,Y)) MGUT (≡ M(X,Y)) d=5 proton decay scale* Mf MSUSY M½ 102 GeV 102 GeV *T. Fukuyama et al, hep-ph/ ; B. Dutta et al, [hep-ph].
23
FIT RESULTS
25
PROTON DECAY SIGNATURES*
ALL RELEVANT PHASES ARE DETERMINED FROM THE FIT! ALL RELEVANT MASSES ARE FOUND FROM UNIFICATION! *P. Filevies Perez, hep-ph/
26
CONCLUSIONS Our results indicate that the minimal SO(10) with low scale SUSY fails to accommodate relevant neutrino mass scale. Split SUSY case not only generates viable ν scale but allows for consistent description of all known masses and mixing parameters in a particular region of parameter space. The model yields interesting signatures for the next generation of proton decay experiments and observable sPMNS13 .
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.