Presentation is loading. Please wait.

Presentation is loading. Please wait.

Welcome to Interactive Chalkboard

Similar presentations


Presentation on theme: "Welcome to Interactive Chalkboard"— Presentation transcript:

1 Welcome to Interactive Chalkboard
Algebra 1 Interactive Chalkboard Copyright © by The McGraw-Hill Companies, Inc. Send all inquiries to: GLENCOE DIVISION Glencoe/McGraw-Hill 8787 Orion Place Columbus, Ohio Welcome to Interactive Chalkboard

2 Splash Screen

3 Lesson 9-1 Factors and Greatest Common Factors
Lesson 9-2 Factoring Using the Distributive Property Lesson 9-3 Factoring Trinomials: x2 + bx + c Lesson 9-4 Factoring Trinomials: ax2 + bx + c Lesson 9-5 Factoring Differences of Squares Lesson 9-6 Perfect Squares and Factoring Contents

4 Example 1 Classify Numbers as Prime or Composite
Example 2 Prime Factorization of a Positive Integer Example 3 Prime Factorization of a Negative Integer Example 4 Prime Factorization of a Monomial Example 5 GCF of a Set of Monomials Example 6 Use Factors Lesson 1 Contents

5 Factor 22. Then classify it as prime or composite.
To find the factors of 22, list all pairs of whole numbers whose product is 22. Answer: Since 22 has more than two factors, it is a composite number. The factors of 22, in increasing order, are 1, 2, 11, and 22. Example 1-1a

6 Factor 31. Then classify it as prime or composite.
The only whole numbers that can be multiplied together to get 31 are 1 and 31. Answer: The factors of 31 are 1 and 31. Since the only factors of 31 are 1 and itself, 31 is a prime number. Example 1-1a

7 Factor each number. Then classify it as prime or composite. a. 17
Answer: 1, 17; prime Answer: 1, 5, 25; composite Example 1-1b

8 Find the prime factorization of 84.
Method 1 The least prime factor of 84 is 2. The least prime factor of 42 is 2. The least prime factor of 21 is 3. All of the factors in the last row are prime. Answer: Thus, the prime factorization of 84 is Example 1-2a

9 84 21 4 3 7 2 2 Method 2 Use a factor tree. and
21 4 3 7 2 2 and All of the factors in the last branch of the factor tree are prime. Answer: Thus, the prime factorization of 84 is or Example 1-2a

10 Find the prime factorization of 60.
Answer: or Example 1-2b

11 Find the prime factorization of –132.
Express –132 as –1 times 132. / \ / \ / \ Answer: The prime factorization of –132 is or Example 1-3a

12 Find the prime factorization of –154.
Answer: Example 1-3b

13 Answer: in factored form is
Factor completely. Answer: in factored form is Example 1-4a

14 Answer: in factored form is
Factor completely. Express –26 as –1 times 26. Answer: in factored form is Example 1-4a

15 Factor each monomial completely. a.
b. Answer: Answer: Example 1-4b

16 Circle the common prime factors.
Find the GCF of 12 and 18. Factor each number. Circle the common prime factors. The integers 12 and 18 have one 2 and one 3 as common prime factors. The product of these common prime factors, or 6, is the GCF. Answer: The GCF of 12 and 18 is 6. Example 1-5a

17 Circle the common prime factors.
Find the GCF of . Factor each number. Circle the common prime factors. Answer: The GCF of and is . Example 1-5a

18 Find the GCF of each set of monomials. a. 15 and 35
b. and Answer: 5 Answer: Example 1-5b

19 Crafts Rene has crocheted 32 squares for an afghan
Crafts Rene has crocheted 32 squares for an afghan. Each square is 1 foot square. She is not sure how she will arrange the squares but does know it will be rectangular and have a ribbon trim. What is the maximum amount of ribbon she might need to finish an afghan? Find the factors of 32 and draw rectangles with each length and width. Then find each perimeter. The factors of 32 are 1, 2, 4, 8, 16, 32. Example 1-6a

20 Answer: The maximum amount of ribbon Rene will need is 66 feet.
The greatest perimeter is 66 feet. The afghan with this perimeter has a length of 32 feet and a width of 1 foot. Answer: The maximum amount of ribbon Rene will need is 66 feet. Example 1-6a

21 Mary wants to plant a rectangular flower bed in her front yard with a stone border. The area of the flower bed will be 45 square feet and the stones are one foot square each. What is the maximum number of stones that Mary will need to go around all four sides of the flower bed? Answer: 92 feet Example 1-6b

22 End of Lesson 1

23 Example 1 Use the Distributive Property Example 2 Use Grouping
Example 3 Use the Additive Inverse Property Example 4 Solve an Equation in Factored Form Example 5 Solve an Equation by Factoring Lesson 2 Contents

24 Use the Distributive Property to factor .
First, find the GCF of 15x and . Factor each number. Circle the common prime factors. GCF: Write each term as the product of the GCF and its remaining factors. Then use the Distributive Property to factor out the GCF. Rewrite each term using the GCF. Simplify remaining factors. Distributive Property Example 2-1a

25 Answer: The completely factored form of is
Example 2-1a

26 Use the Distributive Property to factor .
Factor each number. Circle the common prime factors. GFC: or Rewrite each term using the GCF. Distributive Property Answer: The factored form of is Example 2-1a

27 Use the Distributive Property to factor each polynomial. a.
b. 6ab a2b2 = 27ab3 Answer: Answer: 3ab2 (2 + 5a + 9b) Example 2-1b

28 Group terms with common factors.
Factor the GCF from each grouping. Answer: Distributive Property Example 2-2a

29 Factor Answer: Example 2-2b

30 Group terms with common factors.
Factor GCF from each grouping. Answer: Distributive Property Example 2-3a

31 Factor Answer: Example 2-3b

32 Solve Then check the solutions.
If , then according to the Zero Product Property either or Original equation or Set each factor equal to zero. Solve each equation. Answer: The solution set is Example 2-4a

33 Check Substitute 2 and for x in the original equation.
Example 2-4a

34 Solve Then check the solutions.
Answer: {3, –2} Example 2-4b

35 Solve Then check the solutions.
Write the equation so that it is of the form Original equation Subtract from each side. Factor the GCF of 4y and which is 4y. Zero Product Property or Solve each equation. Example 2-5a

36 Answer: The solution set is Check by substituting
0 and for y in the original equation. Example 2-5a

37 Solve Answer: Example 2-5b

38 End of Lesson 2

39 Example 1 b and c Are Positive
Example 2 b Is Negative and c Is Positive Example 3 b Is Positive and c Is Negative Example 4 b Is Negative and c Is Negative Example 5 Solve an Equation by Factoring Example 6 Solve a Real-World Problem by Factoring Lesson 3 Contents

40 Factor In this trinomial, and You need to find the two numbers whose sum is 7 and whose product is 12. Make an organized list of the factors of 12, and look for the pair of factors whose sum is 7. Factors of 12 Sum of Factors 1, 12 2, 6 3, 4 13 8 7 The correct factors are 3 and 4. Write the pattern. Answer: and Example 3-1a

41 Check You can check the result by multiplying the two factors.
FOIL method F O I L Simplify. Example 3-1a

42 Factor Answer: Example 3-1b

43 Factor In this trinomial, and This means is negative and mn is positive. So m and n must both be negative. Therefore, make a list of the negative factors of 27, and look for the pair whose sum is –12. Factors of 27 Sum of Factors –1, –27 –3, –9 –28 –12 The correct factors are –3 and –9. Write the pattern. Answer: and Example 3-2a

44 Check. You can check this result by using a graphing calculator. Graph
Check You can check this result by using a graphing calculator. Graph and on the same screen. Since only one graph appears, the two graphs must coincide. Therefore, the trinomial has been factored correctly. Example 3-2a

45 Factor Answer: Example 3-2b

46 The correct factors are –3 and 6.
In this trinomial, and This means is positive and mn is negative, so either m or n is negative, but not both. Therefore, make a list of the factors of –18 where one factor of each pair is negative. Look for the pair of factors whose sum is 3. Factors of –18 Sum of Factors 1, –18 –1, , –9 –2, , –6 –3, 6 – – – The correct factors are –3 and 6. Example 3-3a

47 Write the pattern. Answer: and Example 3-3a

48 Factor Answer: Example 3-3b

49 Factor Since and is negative and mn is negative. So either m or n is negative, but not both. Factors of –20 Sum of Factors 1, –20 –1, , –10 –2, , –5 –4, 5 – – – The correct factors are 4 and –5. Example 3-4a

50 Write the pattern. Answer: and Example 3-4a

51 Factor Answer: Example 3-4b

52 Rewrite the equation so that one side equals 0.
Solve Check your solutions. Original equation Rewrite the equation so that one side equals 0. Factor. or Zero Product Property Solve each equation. Answer: The solution is Example 3-5a

53 Check Substitute –5 and 3 for x in the original equation.
Example 3-5a

54 Solve Check your solutions. Answer: Example 3-5b

55 Architecture Marion has a small art studio measuring 10 feet by 12 feet in her backyard. She wants to build a new studio that has three times the area of the old studio by increasing the length and width by the same amount. What will be the dimensions of the new studio? Explore Begin by making a diagram like the one shown to the right, labeling the appropriate dimensions. Example 3-6a

56 Plan Let the amount added to each dimension of the studio.
The new length times the new width equals the new area. old area Solve Write the equation. Multiply. Subtract 360 from each side. Example 3-6a

57 Factor. or Zero Product Property Solve each equation.
Examine The solution set is Only 8 is a valid solution, since dimensions cannot be negative. Answer: The length of the new studio should be or 20 feet and the new width should be or 18 feet. Example 3-6a

58 Photography Adina has a. photograph
Photography Adina has a photograph. She wants to enlarge the photograph by increasing the length and width by the same amount. What dimensions of the enlarged photograph will be twice the area of the original photograph? Answer: Example 3-6b

59 End of Lesson 3

60 Example 1 Factor ax2 + bx + c
Example 2 Factor When a, b, and c Have a Common Factor Example 3 Determine Whether a Polynomial Is Prime Example 4 Solve Equations by Factoring Example 5 Solve Real-World Problems by Factoring Lesson 4 Contents

61 Factor In this trinomial, and You need to find two numbers whose sum is 27 and whose product is or 50. Make an organized list of factors of 50 and look for the pair of factors whose sum is 27. Factors of 50 Sum of Factors 1, 50 2, 25 51 27 The correct factors are 2 and 25. Example 4-1a

62 Check You can check this result by multiplying the two factors.
Write the pattern. and Group terms with common factors. Factor the GCF from each grouping. Answer: Distributive Property Check You can check this result by multiplying the two factors. FOIL method F O I L Simplify. Example 4-1a

63 Factor Answer: Example 4-1a

64 Factor In this trinomial, and Since b is negative, is negative. Since c is positive, mn is positive. So m and n must both be negative. Therefore, make a list of the negative factors of or 72, and look for the pair of factors whose sum is –22. –73 –38 –27 –22 –1, –72 –2, –36 –3, –24 –4, –18 Sum of Factors Factors of 72 The correct factors are –4, –18. Example 4-1b

65 Group terms with common factors.
Write the pattern. and Group terms with common factors. Factor the GCF from each grouping. Distributive Property Answer: Example 4-1b

66 a. Factor b. Factor Answer: Answer: Example 4-1b

67 Factor Notice that the GCF of the terms , and 32 is 4. When the GCF of the terms of a trinomial is an integer other than 1, you should first factor out this GCF. Distributive Property Now factor Since the lead coefficient is 1, find the two factors of 8 whose sum is 6. 9 6 1, 8 2, 4 Sum of Factors Factors of 8 The correct factors are 2 and 4. Example 4-2a

68 8 Answer: So, Thus, the complete factorization of is Example 4-2a

69 Factor Answer: Example 4-2b

70 Factor In this trinomial, and Since b is positive, is positive. Since c is negative, mn is negative, so either m or n is negative, but not both. Therefore, make a list of all the factors of 3(–5) or –15, where one factor in each pair is negative. Look for the pair of factors whose sum is 7. 14 –14 2 –2 –1, 15 1, –15 –3, 5 3, –5 Sum of Factors Factors of –15 Example 4-3a

71 Answer: is a prime polynomial.
There are no factors whose sum is 7. Therefore, cannot be factored using integers. Answer: is a prime polynomial. Example 4-3a

72 Factor Answer: prime Example 4-3b

73 Rewrite so one side equals 0.
Solve Original equation Rewrite so one side equals 0. Factor the left side. or Zero Product Property Solve each equation. Answer: The solution set is Example 4-4a

74 Solve Answer: Example 4-4b

75 Model Rockets Ms. Nguyen’s science class built an air-launched model rocket for a competition. When they test-launched their rocket outside the classroom, the rocket landed in a nearby tree. If the launch pad was 2 feet above the ground, the initial velocity of the rocket was 64 feet per second, and the rocket landed 30 feet above the ground, how long was the rocket in flight? Use the equation Example 4-5a

76 Subtract 30 from each side.
Vertical motion model Subtract 30 from each side. Factor out –4. Divide each side by –4. Factor or Zero Product Property Solve each equation. Example 4-5a

77 The solutions are and seconds. The first time
represents how long it takes the rocket to reach a height of 30 feet on its way up. The second time represents how long it will take for the rocket to reach the height of 30 feet again on its way down. Thus the rocket will be in flight for 3.5 seconds before coming down again. Answer: 3.5 seconds Example 4-5a

78 When Mario jumps over a hurdle, his feet leave the ground traveling at an initial upward velocity of 12 feet per second. Find the time t in seconds it takes for Mario’s feet to reach the ground again. Use the equation Answer: second Example 4-5b

79 End of Lesson 4

80 Example 1 Factor the Difference of Squares
Example 2 Factor Out a Common Factor Example 3 Apply a Factoring Technique More Than Once Example 4 Apply Several Different Factoring Techniques Example 5 Solve Equations by Factoring Example 6 Use Differences of Two Squares Lesson 5 Contents

81 Factor the difference of squares.
Write in form Answer: Factor the difference of squares. Example 5-1a

82 Factor the difference of squares.
and Answer: Factor the difference of squares. Example 5-1a

83 Factor each binomial. a. b. Answer: Answer: Example 5-1b

84 Factor the difference of squares.
The GCF of and 27b is 3b. and Answer: Factor the difference of squares. Example 5-2a

85 Factor Answer: Example 5-2b

86 Factor the difference of squares.
The GCF of and 2500 is 4. and Factor the difference of squares. and Factor the difference of squares. Answer: Example 5-3a

87 Factor Answer: Example 5-3b

88 Group terms with common factors.
Original Polynomial Factor out the GCF. Group terms with common factors. Factor each grouping. is the common factor. Factor the difference of squares, into . Answer: Example 5-4a

89 Factor Answer: Example 5-4b

90 Solve by factoring. Check your solutions.
Original equation. and Factor the difference of squares. or Zero Product Property Solve each equation. Example 5-5a

91 Answer: The solution set is
Check each solution in the original equation. Example 5-5a

92 Solve by factoring. Check your solutions.
Original equation Subtract 3y from each side. The GCF of and 3y is 3y. and Example 5-5a

93 Answer: The solution set is
Applying the Zero Product Property, set each factor equal to zero and solve the resulting three equations. or Answer: The solution set is Check each solution in the original equation. Example 5-5a

94 Solve each equation by factoring. Check your solutions. a.
Answer: Answer: Example 5-5b

95 b. What value of x will result in a figure
Extended-Response Test Item A square with side length x is cut from a right triangle shown below. a. Write an equation in terms of x that represents the area A of the figure after the corner is removed. b. What value of x will result in a figure that is the area of the original triangle? Show how you arrived at your answer. Example 5-6a

96 Read the Test Item A is the area of the triangle minus the area of the square that is to be removed. Solve the Test Item a. The area of the triangle is or 64 square units and the area of the square is square units. Answer: b. Find x so that A is the area of the original triangle, Translate the verbal statement. Example 5-6a

97 Subtract 48 from each side.
and Simplify. Subtract 48 from each side. Simplify. Factor the difference of squares. or Zero Product Property Solve each equation. Answer: Since length cannot be negative, the only reasonable solution is 4. Example 5-6a

98 b. What value of x will result in a figure
Extended-Response Test Item A square with side length x is cut from the larger square shown below. a. Write an equation in terms of x that represents the area A of the figure after the corner is removed. b. What value of x will result in a figure that is of the area of the original square? Answer: Answer: 3 Example 5-6b

99 End of Lesson 5

100 Example 1 Factor Perfect Square Trinomials Example 2 Factor Completely
Example 3 Solve Equations with Repeated Factors Example 4 Use the Square Root Property to Solve Equations Lesson 6 Contents

101 Determine whether is a perfect square trinomial. If so, factor it.
1. Is the first term a perfect square? Yes, 2. Is the last term a perfect square? Yes, 3. Is the middle term equal to ? Yes, Answer: is a perfect square trinomial. Write as Factor using the pattern. Example 6-1a

102 Determine whether is a perfect square trinomial. If so, factor it.
1. Is the first term a perfect square? Yes, 2. Is the last term a perfect square? Yes, 3. Is the middle term equal to ? No, Answer: is not a perfect square trinomial. Example 6-1a

103 Answer: not a perfect square trinomial
Determine whether each trinomial is a perfect square trinomial. If so, factor it. a. b. Answer: not a perfect square trinomial Answer: yes; Example 6-1b

104 Factor . First check for a GCF. Then, since the polynomial has two terms, check for the difference of squares. 6 is the GCF. and Factor the difference of squares. Answer: Example 6-2a

105 Factor . This polynomial has three terms that have a GCF of 1. While the first term is a perfect square, the last term is not. Therefore, this is not a perfect square trinomial. This trinomial is in the form Are there two numbers m and n whose product is and whose sum is 8? Yes, the product of 20 and –12 is –240 and their sum is 8. Example 6-2a

106 Answer: Write the pattern. and Group terms with common factors.
Factor out the GCF from each grouping. is the common factor. Answer: Example 6-2a

107 Factor each polynomial. a.
b. Answer: Answer: Example 6-2b

108 Recognize as a perfect square trinomial.
Solve Original equation Recognize as a perfect square trinomial. Factor the perfect square trinomial. Set the repeated factor equal to zero. Solve for x. Answer: Thus, the solution set is Check this solution in the original equation. Example 6-3a

109 Solve Answer: Example 6-3b

110 Separate into two equations. or
Solve . Original equation Square Root Property Add 7 to each side. Separate into two equations. or Simplify. Answer: The solution set is Check each solution in the original equation. Example 6-4a

111 Recognize perfect square trinomial.
Solve . Original equation Recognize perfect square trinomial. Factor perfect square trinomial. Square Root Property Subtract 6 from each side. Example 6-4a

112 Separate into two equations.
or Separate into two equations. Simplify. Answer: The solution set is Check this solution in the original equation. Example 6-4a

113 Subtract 9 from each side.
Solve . Original equation Square Root Property Subtract 9 from each side. Answer: Since 8 is not a perfect square, the solution set is Using a calculator, the approximate solutions are or about –6.17 and or about –11.83. Example 6-4a

114 Check You can check your answer using a graphing calculator. Graph and Using the INTERSECT feature of your graphing calculator, find where The check of –6.17 as one of the approximate solutions is shown. Example 6-4a

115 Solve each equation. Check your solutions. a.
b c. Answer: Answer: Answer: Example 6-4b

116 End of Lesson 6

117 Explore online information about the information introduced in this chapter.
Click on the Connect button to launch your browser and go to the Algebra 1 Web site. At this site, you will find extra examples for each lesson in the Student Edition of your textbook. When you finish exploring, exit the browser program to return to this presentation. If you experience difficulty connecting to the Web site, manually launch your Web browser and go to Algebra1.com

118 Click the mouse button or press the Space Bar to display the answers.
Transparency 1

119 Transparency 1a

120 Click the mouse button or press the Space Bar to display the answers.
Transparency 2

121 Transparency 2a

122 Click the mouse button or press the Space Bar to display the answers.
Transparency 3

123 Transparency 3a

124 Click the mouse button or press the Space Bar to display the answers.
Transparency 4

125 Transparency 4a

126 Click the mouse button or press the Space Bar to display the answers.
Transparency 5

127 Transparency 5a

128 Click the mouse button or press the Space Bar to display the answers.
Transparency 6

129 Transparency 6a

130 To navigate within this Interactive Chalkboard product:
Click the Forward button to go to the next slide. Click the Previous button to return to the previous slide. Click the Section Back button to return to the beginning of the lesson you are working on. If you accessed a feature, this button will return you to the slide from where you accessed the feature. Click the Main Menu button to return to the presentation main menu. Click the Help button to access this screen. Click the Exit button or press the Escape key [Esc] to end the current slide show. Click the Extra Examples button to access additional examples on the Internet. Click the 5-Minute Check button to access the specific 5-Minute Check transparency that corresponds to each lesson. Help

131 End of Custom Shows WARNING! Do Not Remove
This slide is intentionally blank and is set to auto-advance to end custom shows and return to the main presentation. End of Custom Show

132 End of Slide Show


Download ppt "Welcome to Interactive Chalkboard"

Similar presentations


Ads by Google