Download presentation
Presentation is loading. Please wait.
1
HDAC analysis: Hydrogen in Titan‘s exosphere
Pascal Hedelt(1), Yuichi Ito(2), Heike Rauer(1,3), Ralf Reulke(4), H. U. Keller(2), H. Lammer(5), P. Wurz(6), L. Esposito(7) Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Max Planck Institut für Sonnensystemforschung (MPS) Zentrum für Astronomie und Astrophysik, Technische Universität Berlin (TUB) Institut für Verkehrsforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften Abteilung für Weltraumforschung und Planetologie, Universität Bern Laboratory for Atmospheric and Space Physics, University of Colorado
2
Aims & Scope Using HDAC data gathered during T9, the distribution of atomic hydrogen in Titans exosphere is investigated: Calculate exospheric emission of resonantly scattered Hydrogen Ly-Alpha from Titan Simulate HDAC measurement during the Cassini/Titan T9 encounter Little is known about Titan‘s hydrogen exosphere Vary input parameters Determine exospheric parameters UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
3
Overview of this talk 3D Monte Carlo Model Data Sampling Model
HDAC observations Parameter variations & comparison with HDAC Data Hydrogen distribution Exosphere temperature Cell temperature Conclusions UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
4
Monte Carlo Model Investigate scattering of solar Lyα radiation on H atoms in Titan’s exosphere 3D model Scattering medium: H; absorbing medium: CH4 Altitude range considered: 700 – 30,000km Resonance scattering (isotropic): Redistribution function from Henyey 1940 Considers Maxwellian motion of H atoms Follow 2,500,000 photons within one quarter of the model sphere until they leave at upper/lower boundary or are absorbed; then mirror to get the whole sphere UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
5
Input Data: H & CH4 profiles
Methane profile 700 – 2,000 km: INMS TA, TB, T5 data (De la Haye,et al. 2007) 2,000km – 30,000 km: Particle MC model (Lammer & Wurz, 2003) Hydrogen profile 700 – 1,500 km: Rough fit to Yung ‘84 model 1,500 – 30,000 km Particle MC model (Lammer & Wurz, 2003) Methane Hydrogen Lammer Model Chamberlain model: Bound rbits included Bound orbits excluded Lammer MC model Lammer model Chamberlain model Exobase Yung model INMS data UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
6
Lammer MC Model At exobase: 3D Maxwellian velocity distribution D random angle distribution 2D calculation of trajectories 1D density distribution Photoionization is included but unimportant at Titan Radiative pressure forcing not included
7
Monte Carlo Model: Output
Output: scattering positions, direction before/after scattering, wavelength Sun UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
8
Data Sampling Model Uses output from MonteCarlo model
For every Cassini position during T9: Calculates opt. depth to each scattering point in FOV probability for photon to reach detector Sum up all photons within FOV within discrete wavelength bins Incorporate FOV sensitivity Multiply with cell absorption function Integrate over wavelength Absorption function at beginning of flyby Absorption function at end of flyby UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
9
Data Sampling Model: How it works
UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
10
HDAC observations Cassini closest approach UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
11
Comparison with HDAC Data
Compare model & measurement: Take difference: CELL OFF - H CELL ON Do the same for simulated data… UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
12
Parameter Variations Vary exospheric temperature: T = 149 – 157.4K (De la Haye, et al. 2007) Vary exosphere hydrogen number density: At Exobase: nH = 4.2x103 cm-3 (Yung, 1984) nH = 1.0x104 cm-3 (Broadfoot, et al. 1981) Vary exospheric distribution of H Lammer MC model / Chamberlain model Vary cell temperature UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
13
Best parameter set (so far…)
Input: TExo = 150K, Tcell=300K, H/CH4: Lammer, nH,Exobase= 4.0E4 cm-3 UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
14
I. Exospheric temperature
Input: Tcell=300K, H/CH4: Lammer, nH,Exobase= 4.0E4 cm-3 UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
15
II. Hydrogen density Input: TExo = 150K, Tcell=300K, H/CH4: Lammer
- Replace by newer plot!!! - UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
16
III. Hydrogen profile Fixed density
Input: TExo = 150K, Tcell=300K, nH,Exobase= 1.0E4 cm-3 Replace by newer plot!!! Replace by newer plot!!! UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
17
III. Hydrogen profile Variable densities
Input: TExo = 150K, Tcell=300K - - UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
18
VI. Cell temperature Input: TExo = 150K, H/CH4: Lammer, nH,Exobase= 4.0E4 cm-3 Replace by newer plot!!! Replace by newer plot!!! UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
19
Summary & Conclusion Principal agreement between model and data (work in progress) Exospheric temperature has no visible influence Hydrogen density profile has strong impact Lammer model more realistic Hydrogen density at exobase has strong impact Best fitting value close to nH,Exobase= 4.0E4 cm-3 Celltemperature has only little impact Using HDAC data we are able to determine the hydrogen density & distribution in Titan’s exosphere!!! nH = 4.2x103 cm-3 (Yung, 1984) nH = 1.0x104 cm-3 (Broadfoot, et al. 1981) UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
20
Outlook Find best fitting parameter sets
Use HDAC again during another flyby! Publish… UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
21
Thanks for your attention!
UVIS Team Meeting, Boulder, Colorado 2008/06/ Pascal Hedelt
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.