Presentation is loading. Please wait.

Presentation is loading. Please wait.

Simulation Study of Muon Scattering For Tomography Reconstruction

Similar presentations


Presentation on theme: "Simulation Study of Muon Scattering For Tomography Reconstruction"— Presentation transcript:

1 Simulation Study of Muon Scattering For Tomography Reconstruction
Florida Institute of Technology K. Gnanvo M. Hohlmann D. Mitra, A. Banerjee, S. White, S. Waweru, R. Hoch 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

2 IEEE NSS-MIC 2009, Orlando, FL
Co-ordinates Where are we? 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

3 Cosmic Ray-generated Muons
more massive cousin of electron produced by cosmic ray decay at rate 1 /cm2/min highly penetrating, long half-life affected by Coulomb force 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

4 Muon Tomography Concept
10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

5 IEEE NSS-MIC 2009, Orlando, FL
Muon Scattering Scattering angle Scattering function distribution: Approx. Normal (Bethe 1953) Heavy tail over Gaussian 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

6 Cosmic-ray generated Muon
generated by proton and upper atmosphere’s interaction median at about 3 Gev Peaks at about 30 degree 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

7 Physics behind Models Emission tomography: Transmission tomography
SPECT PET MRI Transmission tomography X-ray Some Optical Reflection Ultra Sound Total Internal Reflection Fluoroscopy (TIRF) Scattering/ Diffusion muon tomography some Optical 11/10/2018 CS Seminar, FIT

8 Reconstruction Algorithms
Point of Closest Approach (POCA) Purely geometry based Estimates where each muon is scattered Max-Likelihood Expectation Maximization Introduced by Schultz et al. (at LANL) More physics based than POCA Estimates Scattering density (λ) per voxel 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

9 IEEE NSS-MIC 2009, Orlando, FL
POCA Concept Incoming ray 3D POCA Emerging ray Three GEM detector-array above and three below: 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

10 POCA Result ≡ processed-Sinogram
40cmx40cmx20cm Blocks (Al, Fe, Pb, W, U) Unit: mm Θ U W Pb Fe Al 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

11 IEEE NSS-MIC 2009, Orlando, FL
POCA Discussion Pro’s Fast and efficient Accurate for simple scenario’s Con’s No Physics: multi- scattering ignored Deterministic Unscattered tracks are not used 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

12 IEEE NSS-MIC 2009, Orlando, FL
ML-EM System Matrix L T Voxels following POCA track 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL Dynamically built for each data set

13 ML-EM Algorithm // Mj is # tracks
(adapted from Schultz et al., TNS 2007, & Tech Reports LANL) gather data: (ΔΘ, Δ, p): scattering angles, linear displacements, momentums estimate track-parameters (L, T) for all muons initialize λ (arbitrary small non-zero number) for each iteration k=1 to I (or, until λ stabilizes) for each muon-track i=1 to M Compute Cij (2) for each voxel j=1 to N // Mj is # tracks (5) return λ 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

14 IEEE NSS-MIC 2009, Orlando, FL
Experiment GEANT4 simulation with partial physics for scattering (Gas Electron Multiplier detector is being built) 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

15 IEEE NSS-MIC 2009, Orlando, FL
MLEM Reconstruction [In ‘Next Generation Applied Intelligence’ (Springer Lecture Series in Computational Intelligence: 214), pp , June 2009.] Very slow for complex scenario A computing cluster (Grid Tier 3) is available, but our programs run on a single node Reconstruction used smart data structure for speed and better memory usage 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

16 IEEE NSS-MIC 2009, Orlando, FL
Slabbing Concept Slabbing Slice 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

17 IEEE NSS-MIC 2009, Orlando, FL
“Slabbing” studies with POCA: Filtered tracks DOCA (distance of closest approach) Ev: 10Mil, Vertical stack: Al-Fe-W: 50cm50cm20cm, Vert. Sep: 10cm Slab size: 3 cm 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

18 POClust Algorithm: clustering POCA points
Input: Geant4 output (list of all muon tracks and associated parameters) 1. For each Muon track { 2. Calculate the POCA pt P and scattering-angle (Vossman/3-D regression). if (P lies outside container) continue; 4. Normalize the scattering angle (angle*p/3GeV). 5. C = Find-nearest-cluster-to-the (POCA pt P); Update-cluster C for the new pt P; After a pre-fixed number of tracks remove sporadic-clusters; Merge close clusters with each-other } 9. Update λ (scattering density) of each cluster C using straight tracks passing through C Output: A volume of interest (VOI) 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

19 IEEE NSS-MIC 2009, Orlando, FL
Scenario 1 Geometry Five 40cmx40xcmx20cm Boxes 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

20 IEEE NSS-MIC 2009, Orlando, FL
POClust Results Medium: Air U,W,Pb,Fe,Al Size: 40X40X20cm 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

21 Three target scenario geometries
Al Al-Fe-W: 40cm*40cm*20cm 10cm separation gap Fe W Al Fe Al-Fe-W: 40cm*40cm*20cm 1m separation gap W 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

22 POClust Results: vertical clutter
Medium: Vacuum POClust Results: vertical clutter Al-Fe-W: 100cm vertical gap Al-Fe-W Size: 50X50X20cm Separation: 10cm 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

23 POClust Results: Reverse Vertical Clutter
Medium: Vacuum U-Pb-Al Size:40X40X20cm Gap:10cm 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

24 IEEE NSS-MIC 2009, Orlando, FL
POClust Results Medium: Vacuum U inside Pb box U size: 10X10X10cm Pb Box: 200X200X200 cm Thickness(Pb box): 10cm 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

25 Why POClust & Not just POCA visualization?
Quantitate: ROC Analyses Improve other Reconstruction algorithms with a Volume of Interest (VOI) or Regions of Interest (ROI) Why any reconstruction at all? POCA visualization is very noisy in a complex realistic scenario 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

26 Additional works with POClust
Clustering provides Volumes of Interest (VOI) inside the container: Run MLEM over only VOI’s for better precision and efficiency Slabbing, followed by Clustering Clustering first, and then sub-dividing regions into variable-sized hierarchical voxel tree, followed by MLEM Clusters expanded over voxels Automated cluster-parameter selection by optimization 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

27 POClust as a pre-processor
Volume of Interest reduces after Clustering: A minimum bounding box (235cm X 235cm X 45cm) Initial Volume of Interest (400cm X 400cm X 300cm) 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

28

29 EM after pre-processing with POClust
Scenario: 5 targets VOI : 400X400X300 cm3 Iterations: 50 Targets: Uranium (100,100,0), Tangsten (-100, 100, 0) W U

30 Results From EM over POClust generated VOI
Scenario: U, W, Pb, Al, Fe placed horizontally Important Points: IGNORE ALL VOXELS OUTSIDE ROI EM COMPUTATION DONE ONLY INSIDE ROI After Clustering, VOI reduces, #Voxels = 18330 Here, Total Volume = 400 X 400 X 300 cm Voxel Size= 5 X 5 X 5 cm #Voxels = Iterations Actual Volume (400 X 400 X 300 cm) Time taken (seconds) Clustered Volume (235 X 235 X 45 cm ) 100 113.5 21.5 60 99.54 20.2 50 95.6 19.5 30 84.48 17.4 10 79.27 16.0

31 A human in muon! Not on moon, again, yet …
Twenty million tracks In air background 130cmx10cmx10cm Ca slab inside 150cmx30cmx30cm H2O slab GEANT4 Phantom 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL

32 Department of Homeland Security Domestic Nuclear Detection Office
Thanks! Debasis Mitra Acknowledgement: Department of Homeland Security Domestic Nuclear Detection Office 10/27/2009 IEEE NSS-MIC 2009, Orlando, FL


Download ppt "Simulation Study of Muon Scattering For Tomography Reconstruction"

Similar presentations


Ads by Google