Download presentation
Presentation is loading. Please wait.
Published byMaximilian Hoover Modified over 6 years ago
1
Draw-Bend Fracture Prediction with Dual-Phase Steels
R. H. Wagoner September 25, 2012 AMPT Wollongong, Australia
2
Outline Background – Shear Fracture, 2006
DBF Results & Simulations, 2011 Intermediate Conclusions Practical Application, 2012 Ideal DBF Test Recommended Procedure No Ideal Test? Results, 2
3
Background – Shear Fracture, 2006
3 3
4
Shear Fracture of AHSS – 2005 Case
Jim Fekete et al, AHSS Workshop, 2006
5
Shear Fracture of AHSS - 2011
Forming Technology Forum 2012 Web site:
6
Unpredicted by FEA / FLD
Stoughton, AHSS Workshop, 2006 6
7
Shear Fracture: Related to Microstructure?
Ref: AISI AHSS Guidelines
8
Conventional Wisdom, 2006 Shear fracture… Notes:
is unique to AHSS (maybe only DP steels) occurs without necking (brittle) is related to coarse, brittle microstructure is time/rate independent Notes: All of these based on the A/SP stamping trials, 2005. All of these are wrong. Most talks assume that these are true, even today.
9
NSF Workshop on AHSS (October 2006)
70 L-IP 60 AUST. SS TWIP 50 IF IF- HS Elongation (%) Elongation (%) 40 Mild ISO ISO 30 BH TRIP CMn 20 HSLA DP, CP 10 MART 300 600 600 900 1200 1600 Tensile Strength (MPa) R. W. Heimbuch: An Overview of the Auto/Steel Partnership and Research Needs [1] 9 9 9
10
2. DBF Results & Simulations, 2011
10 10
11
References: DBF Results & Simulations
J. H. Kim, J. H. Sung, K. Piao, R. H. Wagoner: The Shear Fracture of Dual-Phase Steel, Int. J. Plasticity, 2011, vol. 27, pp J. H. Sung, J. H. Kim, R. H. Wagoner: A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plasticity, 2010, vol. 26, pp J. H. Sung, J. H. Kim, R. H. Wagoner: The Draw-Bend Fracture Test (DBF) and Its Application to DP and TRIP Steels, Trans. ASME: J. Eng. Mater. Technol., (in press) 11
12
DBF Failure Types Type I: Tensile failure (unbent region)
Type II Type III 65o V2 V1 Type I: Tensile failure (unbent region) Type II: Shear failure (not Type I or III) Type III: Shear failure (fracture at the roller) 12 12
13
DBF Test: Effect of R/t 13
14
“H/V” Constitutive Eq.: Large-Strain Verification
14
15
FE Simulated Tensile Test: H/V vs. H, V
15 15
16
Predicted ef, H/V vs. H, V: 3 alloys, 3 temperatures
Standard deviation of ef: simulation vs. experiment Hollomon Voce H/V DP590 0.05 (23%) 0.05 (20%) 0.02 (7%) DP780 0.03 (18%) 0.04 (22%) 0.01 (6%) DP980 0.04 (30%) 0.03 (21%) 0.01 (5%) 16 16
17
FE Draw-Bend Model: Thermo-Mechanical (T-M)
U2, V2 hmetal,air = 20W/m2K Abaqus Standard (V6.7) 3D solid elements (C3D8RT), 5 layers Von Mises, isotropic hardening Symmetric model m = 0.04 hmetal,metal = 5kW/m2K Kim et al., IDDRG, 2009 U1, V1
18
Front Stress vs. Front Displacement
18
19
Displacement to Maximum Front Load vs. R / t
19
20
Is shear fracture of AHSS
brittle or ductile? 20 20
21
Fracture Strains: DP 780 (Typical)
21 21
22
Fracture Strains: TWIP 980 (Exceptional)
22 22
23
Directional DBF : DP 780 (Typical)
23 23
24
Directional DBF Formability: DP980 (Exceptional)
24 24
25
Interim Conclusions “Shear fracture” occurs by plastic localization.
Deformation-induced heating dominates the error in predicting shear failures. Brittle cracking can occur. (Poor microstructure or exceptional tensile ductility, e.g. TWIP). T-dependent constitutive equation is essential. Shear fracture is predictable plastically. (Challenges: solid elements, T-M model.) 25
26
3. Practical Application - 2012
26 26
27
DBF/FE vs. Industrial Practice/FE
Ind.: Plane strain High rate ~Adiabatic FE: Shell Isothermal Static DBF: General strain Moderate rates Thermo-mech. FE: Solid element 27
28
Ideal DBF Test: Plane Strain, High Rate
28
29
Ideal Test Results - Stress
29
30
Ideal Test Results - Strain
30
31
How to Use Practically: Bend, Unbend Regions
31
32
Practical Application of SF FLD – (1) Direct
For each element in contact Known: R, t e*membrane Predicted Fracture: eFEA > e*membrane 32
33
Practical Application of SF FLD – (2) Indirect
For each element drawn over contact Known: (R, t)contact Pmax s*PS tension e*PS tension Predicted Fracture: eFEA > e*PS tension Wu, Zhou, Zhang, Zhou, Du, Shi: SAE 33
34
Calculation: Indirect Method
Example: von Mises Yield, Hollomon Hardening Von Mises: 𝝈 ∗ 𝑷𝑺𝑻 = 𝟑 𝟐 𝑷 𝒎𝒂𝒙 𝑨 Hollomon: 𝝈=𝑲 𝜺 𝒏 So: 𝝈 ∗ 𝑷𝑺𝑻 = 𝟑 𝟐 𝑲 𝜺 ∗ 𝑷𝑺𝑻 𝒏 𝜺 ∗ 𝑷𝑺𝑻 = 𝟐 𝟑 𝝈 ∗ 𝑲 𝟏/𝒏 34
35
Recommended Procedure with Industrial FEA
Use adiabatic law in FEA, use rate sensitivity Classify each element based on X-Y position (tooling) Bend (plane-strain) After bend (plane-strain) General (not Bend, not After) Apply 4 criteria: FLD (Bend, After) Direct SF (Bend) Indirect SF (After) Brittle Fracture* (All?) 35
36
4. No Ideal Test? (What to do?) 36 36
37
e*membrane = f(R/t) What is Needed? Pmax = f(R/t) (PS, high-speed DBF)
37
38
FE Plane Strain DBF Model
U2, V2 = 0 Abaqus Standard (V6.7) Plane strain solid elements (CPE4R), 5 layers Von Mises, isotropic hardening Isothermal, Adiabatic, Thermo-Mechanical U1, V1
39
Adiabatic Constitutive Equation
39
40
Peak Stress, Plane-Strain: DP980
40
41
Membrane Strains at Maximum Load
41
42
Analytical Model: Model vs. Fit
42
43
Analytical Model: Model vs. Fit
43
44
Conclusions Shear fracture is predictable with careful testing or careful constitutive modeling and FEA. “Shear fracture” occurs by plastic localization. “Shear fracture” is an inevitable consequence of draw-bending mechanics. All materials. Brittle fracture can occur, but is unusual. (Poor microstructure or v. high tensile tensile limit, e.g. TWIP). T-dependent constitutive equation is essential for AHSS because of high plastic work. (But probably not Al or many other alloys.) 44
45
Thank you. 45 45
46
References R. H. Wagoner, J. H. Kim, J. H. Sung: Formability of Advanced High Strength Steels, Proc. Esaform 2009, U. Twente, Netherlands, 2009 (CD) J. H. Sung, J. H. Kim, R. H. Wagoner: A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plasticity, (accepted). A.W. Hudgins, D.K. Matlock, J.G. Speer, and C.J. Van Tyne, "Predicting Instability at Die Radii in Advanced High Strength Steels," Journal of Materials Processing Technology, vol. 210, 2010, pp J. H. Kim, J. Sung, R. H. Wagoner: Thermo-Mechanical Modeling of Draw-Bend Formability Tests, Proc. IDDRG: Mat. Prop. Data for More Effective Num. Anal., eds. B. S. Levy, D. K. Matlock, C. J. Van Tyne, Colo. School Mines, 2009, pp (ISDN ) R. H. Wagoner and M. Li: Simulation of Springback: Through-Thickness Integration, Int. J. Plasticity, 2007, Vol. 23, Issue 3, pp M. R. Tharrett, T. B. Stoughton: Stretch-bend forming limits of 1008 AK steel, SAE technical paper No , 2003. M. Yoshida, F. Yoshida, H. Konishi, K. Fukumoto: Fracture Limits of Sheet Metals Under Stretch Bending, Int. J. Mech. Sci., 2005, 47, pp 46
47
Extra Slides 47 47
48
DP Steels 48 48
49
“H/V” Constitutive Framework
Special: Standard: Sung et al., Int. J. Plast. 2010
50
Simulated D-B Test: Effect of Draw Speed
50
51
DBF Formability: DP980(A), RD vs. TD (Typical)
* Directional Formability: TD=RD 51 51
52
DBF Formability: DP980(D), RD vs. TD (Exceptional)
* Directional Formability: RD>TD 52 52
53
Analytical Model – Curvilinear Derivation
Fracture Criterion: Fracture occurs at Tmax for given R, to 53
54
DBF Interpretation: Plane-strain vs. Tension
54
55
Inner and Outer Strains at Maximum Load
55
56
Membrane Strains (R/t Affected Only)
56
57
R/t-Affected Membrane Strains vs. t/R
57
58
Forming Limit Diagram Ref: Hosford & Duncan 58
59
PS T-M Model: Model vs. Fit
59
60
PS T-M Model: Model vs. Fit
60
61
Draw-Bend Fracture Test (DBF): V1, V2 Constant
190.5 mm Start 444.5 mm (10”) V2 = aV1 Max. Finish R 190.5 mm Specimen width: 25mm Tool radius choices: 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 9/16, 12/16 inch 3.2, 4.8, 6.4, 7.9, 9.5, 11.1, 14.3, 19 mm a = V2/V1: 0 and 0.3 Start 444.5 mm(10”) uf V1 Max. Finish Wagoner et al., Esaform, 2009 61 61
62
Ref: AISI AHSS Guidelines
AHSS vs. HSLA Ref: AISI AHSS Guidelines 62
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.