Presentation is loading. Please wait.

Presentation is loading. Please wait.

Draw-Bend Fracture Prediction with Dual-Phase Steels

Similar presentations


Presentation on theme: "Draw-Bend Fracture Prediction with Dual-Phase Steels"— Presentation transcript:

1 Draw-Bend Fracture Prediction with Dual-Phase Steels
R. H. Wagoner September 25, 2012 AMPT Wollongong, Australia

2 Outline Background – Shear Fracture, 2006
DBF Results & Simulations, 2011 Intermediate Conclusions Practical Application, 2012 Ideal DBF Test Recommended Procedure No Ideal Test? Results, 2

3 Background – Shear Fracture, 2006
3 3

4 Shear Fracture of AHSS – 2005 Case
Jim Fekete et al, AHSS Workshop, 2006

5 Shear Fracture of AHSS - 2011
Forming Technology Forum 2012 Web site:

6 Unpredicted by FEA / FLD
Stoughton, AHSS Workshop, 2006 6

7 Shear Fracture: Related to Microstructure?
Ref: AISI AHSS Guidelines

8 Conventional Wisdom, 2006 Shear fracture… Notes:
is unique to AHSS (maybe only DP steels) occurs without necking (brittle) is related to coarse, brittle microstructure is time/rate independent Notes: All of these based on the A/SP stamping trials, 2005. All of these are wrong. Most talks assume that these are true, even today.

9 NSF Workshop on AHSS (October 2006)
70 L-IP 60 AUST. SS TWIP 50 IF IF- HS Elongation (%) Elongation (%) 40 Mild ISO ISO 30 BH TRIP CMn 20 HSLA DP, CP 10 MART 300 600 600 900 1200 1600 Tensile Strength (MPa) R. W. Heimbuch: An Overview of the Auto/Steel Partnership and Research Needs [1] 9 9 9

10 2. DBF Results & Simulations, 2011
10 10

11 References: DBF Results & Simulations
J. H. Kim, J. H. Sung, K. Piao, R. H. Wagoner: The Shear Fracture of Dual-Phase Steel, Int. J. Plasticity, 2011, vol. 27, pp J. H. Sung, J. H. Kim, R. H. Wagoner: A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plasticity, 2010, vol. 26, pp J. H. Sung, J. H. Kim, R. H. Wagoner: The Draw-Bend Fracture Test (DBF) and Its Application to DP and TRIP Steels, Trans. ASME: J. Eng. Mater. Technol., (in press) 11

12 DBF Failure Types Type I: Tensile failure (unbent region)
Type II Type III 65o V2 V1 Type I: Tensile failure (unbent region) Type II: Shear failure (not Type I or III) Type III: Shear failure (fracture at the roller) 12 12

13 DBF Test: Effect of R/t 13

14 “H/V” Constitutive Eq.: Large-Strain Verification
14

15 FE Simulated Tensile Test: H/V vs. H, V
15 15

16 Predicted ef, H/V vs. H, V: 3 alloys, 3 temperatures
Standard deviation of ef: simulation vs. experiment Hollomon Voce H/V DP590 0.05 (23%) 0.05 (20%) 0.02 (7%) DP780 0.03 (18%) 0.04 (22%) 0.01 (6%) DP980 0.04 (30%) 0.03 (21%) 0.01 (5%) 16 16

17 FE Draw-Bend Model: Thermo-Mechanical (T-M)
U2, V2 hmetal,air = 20W/m2K Abaqus Standard (V6.7) 3D solid elements (C3D8RT), 5 layers Von Mises, isotropic hardening Symmetric model m = 0.04 hmetal,metal = 5kW/m2K Kim et al., IDDRG, 2009 U1, V1

18 Front Stress vs. Front Displacement
18

19 Displacement to Maximum Front Load vs. R / t
19

20 Is shear fracture of AHSS
brittle or ductile? 20 20

21 Fracture Strains: DP 780 (Typical)
21 21

22 Fracture Strains: TWIP 980 (Exceptional)
22 22

23 Directional DBF : DP 780 (Typical)
23 23

24 Directional DBF Formability: DP980 (Exceptional)
24 24

25 Interim Conclusions “Shear fracture” occurs by plastic localization.
Deformation-induced heating dominates the error in predicting shear failures. Brittle cracking can occur. (Poor microstructure or exceptional tensile ductility, e.g. TWIP). T-dependent constitutive equation is essential. Shear fracture is predictable plastically. (Challenges: solid elements, T-M model.) 25

26 3. Practical Application - 2012
26 26

27 DBF/FE vs. Industrial Practice/FE
Ind.: Plane strain High rate ~Adiabatic FE: Shell Isothermal Static DBF: General strain Moderate rates Thermo-mech. FE: Solid element 27

28 Ideal DBF Test: Plane Strain, High Rate
28

29 Ideal Test Results - Stress
29

30 Ideal Test Results - Strain
30

31 How to Use Practically: Bend, Unbend Regions
31

32 Practical Application of SF FLD – (1) Direct
For each element in contact Known: R, t  e*membrane Predicted Fracture: eFEA > e*membrane 32

33 Practical Application of SF FLD – (2) Indirect
For each element drawn over contact Known: (R, t)contact  Pmax  s*PS tension  e*PS tension Predicted Fracture: eFEA > e*PS tension Wu, Zhou, Zhang, Zhou, Du, Shi: SAE 33

34 Calculation: Indirect Method
Example: von Mises Yield, Hollomon Hardening Von Mises: 𝝈 ∗ 𝑷𝑺𝑻 = 𝟑 𝟐 𝑷 𝒎𝒂𝒙 𝑨 Hollomon: 𝝈=𝑲 𝜺 𝒏 So: 𝝈 ∗ 𝑷𝑺𝑻 = 𝟑 𝟐 𝑲 𝜺 ∗ 𝑷𝑺𝑻 𝒏  𝜺 ∗ 𝑷𝑺𝑻 = 𝟐 𝟑 𝝈 ∗ 𝑲 𝟏/𝒏 34

35 Recommended Procedure with Industrial FEA
Use adiabatic law in FEA, use rate sensitivity Classify each element based on X-Y position (tooling) Bend (plane-strain) After bend (plane-strain) General (not Bend, not After) Apply 4 criteria: FLD (Bend, After) Direct SF (Bend) Indirect SF (After) Brittle Fracture* (All?) 35

36 4. No Ideal Test? (What to do?) 36 36

37 e*membrane = f(R/t) What is Needed? Pmax = f(R/t) (PS, high-speed DBF)
37

38 FE Plane Strain DBF Model
U2, V2 = 0 Abaqus Standard (V6.7) Plane strain solid elements (CPE4R), 5 layers Von Mises, isotropic hardening Isothermal, Adiabatic, Thermo-Mechanical U1, V1

39 Adiabatic Constitutive Equation
39

40 Peak Stress, Plane-Strain: DP980
40

41 Membrane Strains at Maximum Load
41

42 Analytical Model: Model vs. Fit
42

43 Analytical Model: Model vs. Fit
43

44 Conclusions Shear fracture is predictable with careful testing or careful constitutive modeling and FEA. “Shear fracture” occurs by plastic localization. “Shear fracture” is an inevitable consequence of draw-bending mechanics. All materials. Brittle fracture can occur, but is unusual. (Poor microstructure or v. high tensile tensile limit, e.g. TWIP). T-dependent constitutive equation is essential for AHSS because of high plastic work. (But probably not Al or many other alloys.) 44

45 Thank you. 45 45

46 References R. H. Wagoner, J. H. Kim, J. H. Sung: Formability of Advanced High Strength Steels, Proc. Esaform 2009, U. Twente, Netherlands, 2009 (CD) J. H. Sung, J. H. Kim, R. H. Wagoner: A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plasticity, (accepted). A.W. Hudgins, D.K. Matlock, J.G. Speer, and C.J. Van Tyne, "Predicting Instability at Die Radii in Advanced High Strength Steels," Journal of Materials Processing Technology,  vol. 210, 2010,  pp J. H. Kim, J. Sung, R. H. Wagoner: Thermo-Mechanical Modeling of Draw-Bend Formability Tests, Proc. IDDRG: Mat. Prop. Data for More Effective Num. Anal., eds. B. S. Levy, D. K. Matlock, C. J. Van Tyne, Colo. School Mines, 2009, pp (ISDN ) R. H. Wagoner and M. Li: Simulation of Springback: Through-Thickness Integration, Int. J. Plasticity, 2007, Vol. 23, Issue 3, pp M. R. Tharrett, T. B. Stoughton: Stretch-bend forming limits of 1008 AK steel, SAE technical paper No , 2003. M. Yoshida, F. Yoshida, H. Konishi, K. Fukumoto: Fracture Limits of Sheet Metals Under Stretch Bending, Int. J. Mech. Sci., 2005, 47, pp 46

47 Extra Slides 47 47

48 DP Steels 48 48

49 “H/V” Constitutive Framework
Special: Standard: Sung et al., Int. J. Plast. 2010

50 Simulated D-B Test: Effect of Draw Speed
50

51 DBF Formability: DP980(A), RD vs. TD (Typical)
* Directional Formability: TD=RD 51 51

52 DBF Formability: DP980(D), RD vs. TD (Exceptional)
* Directional Formability: RD>TD 52 52

53 Analytical Model – Curvilinear Derivation
Fracture Criterion: Fracture occurs at Tmax for given R, to 53

54 DBF Interpretation: Plane-strain vs. Tension
54

55 Inner and Outer Strains at Maximum Load
55

56 Membrane Strains (R/t Affected Only)
56

57 R/t-Affected Membrane Strains vs. t/R
57

58 Forming Limit Diagram Ref: Hosford & Duncan 58

59 PS T-M Model: Model vs. Fit
59

60 PS T-M Model: Model vs. Fit
60

61 Draw-Bend Fracture Test (DBF): V1, V2 Constant
190.5 mm Start 444.5 mm (10”) V2 = aV1 Max. Finish R 190.5 mm Specimen width: 25mm Tool radius choices: 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 9/16, 12/16 inch 3.2, 4.8, 6.4, 7.9, 9.5, 11.1, 14.3, 19 mm a = V2/V1: 0 and 0.3 Start 444.5 mm(10”) uf V1 Max. Finish Wagoner et al., Esaform, 2009 61 61

62 Ref: AISI AHSS Guidelines
AHSS vs. HSLA Ref: AISI AHSS Guidelines 62


Download ppt "Draw-Bend Fracture Prediction with Dual-Phase Steels"

Similar presentations


Ads by Google