Download presentation
Presentation is loading. Please wait.
Published byCandace Hunter Modified over 6 years ago
1
Core Case Study: E-Waste – An Exploding Problem
Electronic waste (e-waste) is the fastest growing solid waste problem Most ends up in landfills and incinerators Composition includes: High-quality plastics Valuable metals Toxic and hazardous pollutants
3
Core Case Study: E-Waste – An Exploding Problem (cont’d.)
Shipped to other countries International Basel Convention Bans transferring hazardous wastes from developed countries to developing countries European Union Cradle-to-grave approach
4
Figure 21-1: These workers in Taizhou City in China’s Zhejiang Province are recovering valuable materials from scrap computers shipped from the United States. Question: Have you disposed of an electronic device lately? If so, how did you dispose of it? Fig. 21-1, p. 576
5
21-1 What Are Solid Waste and Hazardous Waste, and Why Are They Problems?
Solid waste contributes to pollution and includes valuable resources that could be reused or recycled Hazardous waste contributes to pollution, as well as to natural capital degradation, health problems, and premature deaths
6
We Throw Away Huge Amounts of Useful Things
Solid waste Industrial solid waste Mines, farms, industries Municipal solid waste (MSW) Trash Waste ends up in: Rivers, lakes, the ocean, and natural landscapes
7
Hazardous Waste Is a Serious and Growing Problem
Hazardous waste (toxic waste) Threatens human health of the environment Classes of hazardous waste Organic compounds Toxic heavy metals Radioactive waste
8
Case Study: Solid Waste in the United States
Leader in solid waste problem In trash production, by weight, per person 98.5% of all solid waste is industrial waste Most wastes break down very slowly If at all
9
Figure 21-5: A year’s worth of solid waste produced by family of four in San Diego, California. Recyclable items are on the left and the rest of their MSW is on the right. Fig. 21-5, p. 579
10
21-2 How Should We Deal with Solid Waste?
A sustainable approach to solid waste is: First to reduce it Then to reuse or recycle it Finally, to safely dispose of what is left
11
We Can Burn, Bury, or Recycle Solid Waste or Produce Less of It
Waste management Reduce harm, but not amounts Waste reduction Use less and focus on reuse, recycle, compost Integrated waste management Uses a variety of strategies
12
To manufacturers for reuse or for recycling Compost Landfill
Raw materials Processing and manufacturing Products Solid and hazardous wastes generated during the manufacturing process Waste generated by households and businesses Figure 21-6: We can reduce wastes by refusing or reducing resource use and by reusing, recycling, and composting what we discard, or we can manage them by burying them in landfills or incinerating them. Most countries rely primarily on burial and incineration. Question: What happens to the solid waste you produce? Food/yard waste Hazardous waste Remaining mixed waste Plastic Glass Metal Paper To manufacturers for reuse or for recycling Hazardous waste management Compost Landfill Incinerator Fertilizer Fig. 21-6, p. 581
13
We Can Cut Solid Wastes by Refusing, Reducing, Reusing, and Recycling
Waste reduction is based on: Refuse – don’t use it Reduce – use less Reuse – use it over and over Recycle Composting Using bacteria to decompose biodegradable waste
14
Refusing, Reducing, Reusing, and Recycling (cont’d.)
Six strategies: Change industrial processes to eliminate harmful chemicals Redesign manufacturing process to use less material and energy Develop products that are easy to recycle Eliminate unnecessary packaging Use fee-per-bag waste collection systems Establish cradle-to grave responsibility
15
What We Should Do What We Do Reduce Bury (67%) Reuse
Recycle/Compost (23.7%) Recycle/Compost Incinerate (9%) Incinerate Reuse (0.2%) Figure 21-7: Priorities recommended by the U.S. National Academy of Sciences for dealing with municipal solid waste (left) compared with actual waste-handling practices in the United States based on data (right). Question: Why do you think most countries do not follow most of the scientific-based priorities listed on the left? Bury Reduce (<0.1%) Fig. 21-7, p. 581
16
21-3 Why Are Refusing, Reducing, Reusing, and Recycling So Important?
By refusing and reducing resource use and by reusing and recycling what we use, we: Decrease our consumption of matter and energy resources Reduce pollution and natural capital degradation Save money
17
There Are Alternatives to the Throwaway Economy
We increasingly substitute throwaway items for reusable ones In general, reuse is on the rise One solution: taxing plastic shopping bags Ireland, Taiwan, the Netherlands
18
Figure 21-11: Individuals matter
Figure 21-11: Individuals matter. There are many ways to reuse the items we purchase. Question: Which of these suggestions have you tried and how did they work for you? Fig , p. 583
19
There Is Great Potential for Recycling (cont’d.)
With incentives, the U.S. could recycle and compost 80% of its municipal solid waste Composting Mimics nature’s recycling of nutrients Resulting organic matter can be used to: Supply plant nutrients Slow soil erosion Retain water Improve crop yield
20
Recycling Plastics Plastics Currently only 7% is recycled in the U.S.
Composed of resins created from oil and natural gas Currently only 7% is recycled in the U.S. Many types of plastic resins Difficult to separate
21
Recycling Has Advantages and Disadvantages
Net economic health Environmental benefits Disadvantages Costly Single-pickup system No separation needed
22
Trade-Offs Recycling Advantages Disadvantages
Reduces energy and mineral use and air and water pollution Can cost more than burying in areas with ample landfill space Reduces greenhouse gas emissions Reduces profits for landfill and incinerator owners Figure 21-14: Recycling solid waste has advantages and disadvantages (Concept 21-3). Questions: Which single advantage and which single disadvantage do you think are the most important? Why? Reduces solid waste Inconvenient for some Fig , p. 585
23
21-4 The Advantages and Disadvantages of Burning or Burying Solid Waste
Technologies for burning and burying solid wastes are well developed air and water pollution greenhouse gas emissions buried wastes eventually contribute to the pollution and degradation of land and water resources
24
Burning Solid Waste Has Advantages and Disadvantages
Waste-to-energy incinerators To heat water or produce electricity Landfills emit more air pollutants than modern waste-to-energy incinerators Toxic chemicals that are filtered must be disposed of or stored
25
Electrostatic precipitator
Electricity Smokestack Steam Turbine Crane Generator Furnace Wet scrubber Boiler Electrostatic precipitator Waste pit Water added Figure 21.13: Solutions. A waste-to-energy incinerator with pollution controls burns mixed solid wastes and recovers some of the energy to produce steam to use for heating or producing electricity. Questions: Would you invest in such a project? Why or why not? Bottom ash Dirty water Conveyor Fly ash To waste treatment plant Ash for treatment, disposal in landfill, or use as landfill cover Fig , p. 588
26
Waste-to-Energy Incineration
Trade-Offs Waste-to-Energy Incineration Advantages Disadvantages Reduces trash volume Expensive to build Produces a hazardous waste Produces energy Concentrates hazardous substances into ash for burial Figure 21-16: Incinerating solid waste has advantages and disadvantages (Concept 21-4). These trade-offs also apply to the incineration of hazardous waste. Questions: Which single advantage and which single disadvantage do you think are the most important? Why? Emits some CO2 and other air pollutants Sale of energy reduces cost Encourages waste production Fig , p. 588
27
Burying Solid Waste Has Advantages and Disadvantages
Sanitary landfills Compacted layers of waste between clay or foam Bottom liners; containment systems Open dumps Widely used in less-developed countries Rare in developed countries Large pit Sometimes garbage is burned
28
Trade-Offs Sanitary Landfills Advantages Disadvantages
Low operating costs Noise, traffic, and dust Releases greenhouse gases (methane and CO2) unless they are collected Can handle large amounts of waste Filled land can be used for other purposes Output approach that encourages waste production Figure 21-18: Using sanitary landfills to dispose of solid waste has advantages and disadvantages (Concept 21-4). Questions: Which single advantage and which single disadvantage do you think are the most important? Why? No shortage of landfill space in many areas Eventually leaks and can contaminate groundwater Fig , p. 589
29
21-5 How Should We Deal with Hazardous Waste?
A more sustainable approach to hazardous waste: First, produce less of it Then, reuse or recycle it Then, convert it to less-hazardous materials Finally, safely store what is left
30
We Can Use Integrated Management of Hazardous Waste
Integrated management of hazardous wastes Produce less Convert to less hazardous substances Rest in long-term safe storage Increased use for postconsumer hazardous waste
31
Radioactive contaminants
Organic contaminants Inorganic metal contaminants Poplar tree Indian mustard Brake fern Sunflower Willow tree Landfill Oil spill Figure 21-22: Solutions. Phytoremediation involves using various types of plants that function as pollution sponges to clean up contaminants such as radioactive substances (left), organic compounds (center), and toxic metals (right) from soil and water. Polluted groundwater in Decontaminated water out Polluted leachate Soil Soil Groundwater Groundwater Rhizofiltration Roots of plants such as sunflowers with dangling roots on ponds or in greenhouses can absorb pollutants such as radioactive strontium-90 and cesium-137 and various organic chemicals. Phytostabilization Plants such as willow trees and poplars can absorb chemicals and keep them from reaching groundwater or nearby surface water. Phytodegredation Plants such as poplars can absorb toxic organic chemicals and break them down into less harmful compounds which they store or release slowly into the air. Phytoextraction Roots of plants such as Indian mustard and brake ferns can absorb toxic metals such as lead, arsenic, and others and store them in their leaves. Plants can then be recycled or harvested and incinerated. Fig , p. 593
32
Case Study: Hazardous Waste Regulation in the United States
1976 – Resource Conservation and Recovery Act (RCRA) EPA sets standards and gives permits Cradle to grave Covers only 5% of hazardous wastes
33
Case Study: Hazardous Waste Regulation in the United States (cont’d.)
1980 – Comprehensive Environmental, Compensation, and Liability Act (CERCLA) National Priorities List 2013 – 1320 Superfund sites; 365 cleaned Pace of cleanup has slowed Superfund is broke Laws encouraging the cleanup of brownfields Abandoned industrial sites
34
Figure 21-29: Leaking barrels of toxic waste found at a Superfund site that has since been cleaned up. Fig , p. 596
35
Providing Environmental Justice for Everyone Is an Important Goal
Everyone is entitled to protection from environmental hazards Which communities in the U.S. have the largest share of hazardous waste dumps? Environmental discrimination
36
International Treaties Have Reduced Hazardous Waste
Basel Convention 1992 – in effect 1995 amendment – bans all transfers of hazardous wastes from industrialized countries to less-developed countries 2012 – ratified by 179 countries, but not the United States
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.