Presentation is loading. Please wait.

Presentation is loading. Please wait.

Filtering/smoothing. Use of A(,). bandpass filtering

Similar presentations


Presentation on theme: "Filtering/smoothing. Use of A(,). bandpass filtering"— Presentation transcript:

1 Filtering/smoothing. Use of A(,). bandpass filtering Suppose X(x,y)  j,k jk exp{i(j x + k y)} Y(x,y) = A[X](x,y)  j,k A(j,k) jk exp{i(j x + k y)} e.g. If A(,) = 1, | ± 0|, |±0|   = otherwise Y(x,y) contains only these terms Repeated xeroxing

2 Approximating an ideal low-pass filter.
Transfer function A() = ||   Ideal Y(t) =  a(u) X(t-u) t,u in Z A() =  a(u) exp{-i  u) - <    a(u) =  exp{iu}A()d / 2 = |lamda|<Omega exp{i u}d/2 = / u=0 = sin u/u u  0

3 Bank of bandpass filters

4

5

6 Fourier series. How close is A(n)() to A() ?

7

8 By substitution

9

10 Error

11 Convergence factors. Fejer (1900)
Replace (*) by Fejer kernel integrates to 1 non-negative approximate Dirac delta

12

13

14

15

16 General class. h(u) = 0, |u|>1
 h(u/n) exp{-iu} a(u) =  H(n)() A(-) d (**) with H(n)() = (2)-1  h(u/n) exp{-iu} h(.): convergence factor, taper, data window, fader (**) = A() + n-1 H()d A'() + ½n-22H()d A"() + ...

17 Lowpass filter.

18 Smoothing/smoothers. goal: retain smooth/low frequency components of signal while reducing the more irregular/high frequency ones difficulty: no universal definition of smooth curve Example. running mean avet-kst+k Y(s)

19 Kernel smoother. S(t) =  wb(t-s)Y(s) /  wb(t-s) wb(t) = w(t/b) b: bandwidth ksmooth()

20 Local polynomial. Linear case Obtain at , bt OLS intercept and slope of points {(s,Y(s)): t-k  s  t+k} S(t) = at + btt span: (2k+1)/n lowess(), loess(): WLS can be made resistant

21

22 Running median medt-kst+k Y(s) Repeat til no change Other things: parametric model, splines, ... choice of bandwidth/binwidth

23 Finite Fourier transforms. Considered

24 Empirical Fourier analysis.
Uses. Estimation - parameters and periods Unification of data types Approximation of distributions System identification Speeding up computations Model assessment ...

25

26 Examples. 1. Constant. X(t)=1

27 Inversion. fft()

28 Convolution. Lemma If |X(t)M, a(0) and |ua(u)| A, Y(t) =  a(t-u)X(u) then, |dYT() – A() dYT() |  4MA Application. Filtering Add S-T zeroes

29 Periodogram. |dT ()|2

30 Chandler wobble.

31 Interpretation of frequency.

32 Some other empirical FTs.
1. Point process on the line. {0j <T}, j=1,...,N N(t), 0t<T dN(t)/dt = j (t-j) Might approximate by a 0-1 time series Yt = point in [0,t) = otherwise j Yt exp{-it}

33 2. M.p.p. (sampled time series).
{j , Mj } {Y(j )} j Mj exp{-ij} j Y(j ) exp{-ij}

34 3. Measure, processes of increments
4. Discrete state-valued process Y(t) values in N, g:NR t g(Y(t)) exp{-it} 5. Process on circle Y(),   <  Y() = k k exp{ik}

35 Other processes. process on sphere, line process, generalized process, vector-valued time, LCA group


Download ppt "Filtering/smoothing. Use of A(,). bandpass filtering"

Similar presentations


Ads by Google