Download presentation
Presentation is loading. Please wait.
Published byAgus Hermanto Modified over 6 years ago
1
Regression Analysis 4e Montgomery, Peck & Vining
Chapter 12 Introduction to Nonlinear Regression Regression Analysis 4e Montgomery, Peck & Vining
2
Regression Analysis 4e Montgomery, Peck & Vining
3
Regression Analysis 4e Montgomery, Peck & Vining
Nonlinear Regression Models Regression Analysis 4e Montgomery, Peck & Vining
4
Regression Analysis 4e Montgomery, Peck & Vining
If the derivatives of the expectation function for a regression model still contains the parameters, then the function is nonlinear. For example, Regression Analysis 4e Montgomery, Peck & Vining
5
Regression Analysis 4e Montgomery, Peck & Vining
6
Regression Analysis 4e Montgomery, Peck & Vining
7
Regression Analysis 4e Montgomery, Peck & Vining
Text also contains a famous example of a nonlinear model, the Clausius-Clapeyron Equation Regression Analysis 4e Montgomery, Peck & Vining
8
Regression Analysis 4e Montgomery, Peck & Vining
12.2 Nonlinear Least Squares Regression Analysis 4e Montgomery, Peck & Vining
9
Regression Analysis 4e Montgomery, Peck & Vining
12.2 Nonlinear Least Squares Regression Analysis 4e Montgomery, Peck & Vining
10
Regression Analysis 4e Montgomery, Peck & Vining
Example 12.1 Regression Analysis 4e Montgomery, Peck & Vining
11
Regression Analysis 4e Montgomery, Peck & Vining
12.2 Nonlinear Least Squares Geometry of Linear and Nonlinear Least Squares Regression Analysis 4e Montgomery, Peck & Vining
12
Regression Analysis 4e Montgomery, Peck & Vining
13
Regression Analysis 4e Montgomery, Peck & Vining
12.3 Transformation to a Linear Model Regression Analysis 4e Montgomery, Peck & Vining
14
Regression Analysis 4e Montgomery, Peck & Vining
12.3 Transformation to a Linear Model If a transformation can be applied to the function, and the result is a linear function, we say the original function is “intrinsically linear”. Regression Analysis 4e Montgomery, Peck & Vining
15
Regression Analysis 4e Montgomery, Peck & Vining
Example 12.2 The Puromycin Data Regression Analysis 4e Montgomery, Peck & Vining
16
Regression Analysis 4e Montgomery, Peck & Vining
17
Regression Analysis 4e Montgomery, Peck & Vining
Example 12.2 The Puromycin Data Regression Analysis 4e Montgomery, Peck & Vining
18
Regression Analysis 4e Montgomery, Peck & Vining
Example 12.2 The Puromycin Data Regression Analysis 4e Montgomery, Peck & Vining
19
Regression Analysis 4e Montgomery, Peck & Vining
Example 12.2 The Puromycin Data Regression Analysis 4e Montgomery, Peck & Vining
20
Regression Analysis 4e Montgomery, Peck & Vining
Linearizing the model expectation function to produce a linear regression model did not produce a satisfactory result Regression Analysis 4e Montgomery, Peck & Vining
21
Regression Analysis 4e Montgomery, Peck & Vining
22
Regression Analysis 4e Montgomery, Peck & Vining
23
Regression Analysis 4e Montgomery, Peck & Vining
24
Regression Analysis 4e Montgomery, Peck & Vining
25
Regression Analysis 4e Montgomery, Peck & Vining
Estimation of the variance and the covariance matrix: Regression Analysis 4e Montgomery, Peck & Vining
26
Regression Analysis 4e Montgomery, Peck & Vining
How linearization works: Regression Analysis 4e Montgomery, Peck & Vining
27
Regression Analysis 4e Montgomery, Peck & Vining
28
Regression Analysis 4e Montgomery, Peck & Vining
29
Regression Analysis 4e Montgomery, Peck & Vining
30
Regression Analysis 4e Montgomery, Peck & Vining
31
Regression Analysis 4e Montgomery, Peck & Vining
32
Regression Analysis 4e Montgomery, Peck & Vining
33
Regression Analysis 4e Montgomery, Peck & Vining
34
Regression Analysis 4e Montgomery, Peck & Vining
35
Regression Analysis 4e Montgomery, Peck & Vining
36
Regression Analysis 4e Montgomery, Peck & Vining
Problems May converge very slowly S may actually increase or fail to converge Dependence on the starting values of 0 Regression Analysis 4e Montgomery, Peck & Vining
37
Regression Analysis 4e Montgomery, Peck & Vining
Alternative Methods of Estimation Method of Steepest Descent Fractional Increments Marquardt’s Compromise Regression Analysis 4e Montgomery, Peck & Vining
38
Regression Analysis 4e Montgomery, Peck & Vining
39
Regression Analysis 4e Montgomery, Peck & Vining
40
Regression Analysis 4e Montgomery, Peck & Vining
41
Regression Analysis 4e Montgomery, Peck & Vining
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.