Download presentation
Presentation is loading. Please wait.
Published byJosé Ignacio Francisco José Carmona Villalba Modified over 6 years ago
1
Data Analysis Module: Basic Visualizations
Programming in R Data Analysis Module: Basic Visualizations
2
Data Analysis Module Basic Descriptive Statistics and Confidence Intervals Basic Visualizations Histograms Pie Charts Bar Charts Scatterplots Ttests One Sample Paired Independent Two Sample ANOVA Chi Square and Odds Regression Basics
3
Data Analysis: Visualizations
Visualization is just as important to exploratory data analysis as descriptive statistics. In these notes, we will go through four primary visualization tools that every analyst uses.
4
Data Analysis: Visualizations
Visualization 1: Histogram Features: Typically univariate display Demonstrates distribution/spread Used with continuous data
5
Data Analysis: Visualizations
Visualization 1: Histogram Basic R Code: hist(x, freq=FALSE, col="Red", main="Figure i: xx", xlab=“label", ylab=“label",xlim= c(0,n)) Note: Freq=TRUE will generate the frequencies on the y axis. FALSE will generate the percentages.
6
Data Analysis: Visualizations
Visualization 2: Pie Charts Features: Typically univariate display Demonstrates percent of a whole Used with categorical data
7
Data Analysis: Visualizations
Visualization 2: Pie Chart Basic R Code: Create a table tablex<-table(x) (2) Generate the Pie Chart pie(tablex) (3) Add preferred colors and labels colors<-c("Yellow", "Red", "Blue", "Cyan") pie(tablex, col=colors, main=“figure i")
8
Data Analysis: Visualizations
Visualization 3: Bar Charts Features: Typically univariate display Demonstrates frequency by category Typically categorical data
9
Data Analysis: Visualizations
Visualization 3: Bar Chart Basic R Code: barplot(table(x), col=colors, horiz=TRUE, main = “figure i: Bar Chart", xlab = “Count of Stuff") Note: horiz = TRUE will generate a horizontal chart. horiz = FALSE will generate a vertical chart.
10
Data Analysis: Visualizations
Visualization 4: Scatterplot Features: Typically bivariate display Demonstrates relationship between two continuous variables Standard visual for correlation
11
Data Analysis: Visualizations
Visualization 4: Scatterplot Basic R Code: plot(x, y, main=“figure i: scatterplot", xlab = “x", ylab=“y", pch= 19, ylim = c(0,n), xlim = c(0, n)) Note: X is the independent variable, Y is the dependent variable. Ylim and xlim are establishing the range of the axes.
12
Data Analysis: Visualizations
Cool pch values
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.