Presentation is loading. Please wait.

Presentation is loading. Please wait.

CSE 140 Lecture 12 Combinational Standard Modules

Similar presentations


Presentation on theme: "CSE 140 Lecture 12 Combinational Standard Modules"— Presentation transcript:

1 CSE 140 Lecture 12 Combinational Standard Modules
CK Cheng CSE Dept. UC San Diego

2 Part III. Standard Modules
Interconnect Modules: 1. Decoder, 2. Encoder 3. Multiplexer, 4. Demultiplexer

3 Multiplexer Definition Logic Diagram Application

4 Interconnect: Decoder, Encoder, Mux, DeMux
Processors P1 Memory Bank Mux P2 Pk Demux Decoder Data Address Address k Address 2 Address 1 Data 1 Data k Arbiter n n-m m 2m Decoder: Decode the address to assert the addressed device Mux: Select the inputs according to the index addressed by the control signals

5 iClicker: Multiplexer Definition
A device that interleaves two or more activities A communications device that combines several signals for transmission over a single medium A logic circuit that sends one of several inputs out over a single output channel. The circuit that uses a common communications channel for sending two or more messages or signals. All of the above

6 3. Mux (Multiplexer) Definition: A digital module that selects one of data inputs according to the binary address of the selector. E y D2n-1-D0 (Data input) Sn-1,0 (Selector or Address) Description If E = 1 y = Di where i = (Sn-1, .. , S0) Else y = 0

7 Multiplexer (Mux): Definition
Selects between one of N inputs to connect to the output. log2N-bit select input – control input E: Enable y: Output S: Selector or Address D0 D1 1 Data input

8 Multiplexer (Mux): Definition
Selects between one of N inputs to connect to the output. log2N-bit select input – control input Example: :1 Mux

9 PI Q: What is the output of the following MUX? 1 Can’t say
1 Can’t say E =1 y S=1 1

10 Multiplexer Definition: 4-input mux
En D0 S1 S0 y D1 1 y D2 2 D3 3 S1 S0

11 Multiplexer: Logic Diagram
Logic gates Sum-of-products Tristates For an N-input mux, use N tristates Turn on exactly one to select the appropriate input

12 Multiplexer Application: universal set {Mux}
We use selector to decompose the function into smaller functions (less number of variables), which follows Shannon’s expansion. We simplify the decomposed functions using K-map, which follows consensus theorem.

13 Multiplexer Application
Mux for a Boolean function with truth table as input Building blocks of FPGA (Field Programmable Gate Array). iClicker: For the logic diagram on left, output Y is AB (AB)’ A+B (A+B)’ None of the above

14 Multiplexer Application: universal set {Mux}
Example 1: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with an 8-input Mux. id abc f 000 1 001 2 010 - 3 011 4 100 5 101 6 110 7 111 En y a b c S2 S1 S0 1 2 3 4 5 6 7

15 Example 2: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 4-input Muxes.
y a b S1 S0 1 2 3 ab c=0 c=1 D 00 D0 01 D1 10 D2 11 D3

16 Example 3: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 2-input Muxes.
00 01 10 11 D(b,c) 1 - D0 D1 E 1 a y

17 Example 3: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 2-input Muxes.
00 01 10 11 D(b,c) 1 - D0 D1 E b’ 1 a y D0 (b,c) = b’ D1 (b,c) = bc c=0 1 - c=1 b=0 b=1 c=0 c=1 1 b=0 b=1 D1 (b,c)

18 Example 3: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 2-input Muxes.
D1 (b,c) b\c 1 D D0= D1= E b’ 1 a y

19 Example 3: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 2-input Muxes.
D1 (b,c) b\c 1 D D0=0 D1=c E b’ 1 a b y c

20 Example 4: Given f (a,b,c) = Σm (0,2,4,7) + Σd(3,5), implement with 2-input Muxes.
00 01 10 11 D 1 - D0 D1 E 1 a y D0(b,c) D1(b,c)

21 4. Demultiplexers E yi = x if i = (Sn-1, .. , S0) & E=1
yi = 0 otherwise y2n-1 -y0 x S(n-1,0) Control Input

22 Shifters Logical shifter: shifts value to left or right and fills empty spaces with 0’s Ex: >> 2 = 00110 Ex: << 2 = 00100 Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb). Ex: >>> 2 = 11110 Ex: <<< 2 = 00100 Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end Ex: ROR 2 = 01110 Ex: ROL 2 = 00111

23 Shifter s d xn x0 x-1 xn-1 yn-1 y0 s / n l / r
yi = xi-1 if E = 1, s = 1, and d = L = xi+1 if E = 1, s = 1, and d = R = xi if E = 1, s = 0 = 0 if E = 0 s d yi E 1 xi+1 xi-1 xi Can be implemented with a mux

24 Shifter Design

25 Barrel Shifter shift x s0 s1 s2 0 1 0 1 0 1 O or 1 shift O or 2 shift
0 1 0 1 0 1 s0 O or 1 shift s1 O or 2 shift 0 1 0 1 0 1 0 1 0 1 s2 O or 4 shift y 0 1 0 1 0 1 0 1 0 1 0 1

26 Shifters as Multipliers and Dividers
A left shift by N bits multiplies a number by 2N Ex: << 2 = (1 × 22 = 4) Ex: << 2 = (-3 × 22 = -12) The arithmetic right shift by N divides a number by 2N Ex: >>> 2 = (8 ÷ 22 = 2) Ex: >>> 2 = (-16 ÷ 22 = -4)


Download ppt "CSE 140 Lecture 12 Combinational Standard Modules"

Similar presentations


Ads by Google