Download presentation
Presentation is loading. Please wait.
1
Cellular Respiration and Fermentation
7 Cellular Respiration and Fermentation
2
© 2014 Pearson Education, Inc.
3
Light energy ECOSYSTEM Photosynthesis in chloroplasts Organic
Figure 7.2 Light energy ECOSYSTEM Photosynthesis in chloroplasts Organic molecules CO2 H2O O2 Cellular respiration in mitochondria Figure 7.2 Energy flow and chemical recycling in ecosystems ATP powers most cellular work ATP Heat energy 3
4
Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels
__________________________________________________ _________________________________________ ___________________________________________________________________________ © 2014 Pearson Education, Inc. 4
5
________________________________________
________________________________________________________________________________ Although carbohydrates, fats, and proteins are all consumed as fuel, it is helpful to trace cellular respiration with the sugar glucose ________________________________________ © 2014 Pearson Education, Inc. 5
6
The Principle of Redox _________________________________________________________________________ _______________________________ © 2014 Pearson Education, Inc. 6
7
becomes oxidized (loses electron) becomes reduced (gains electron)
Figure 7.UN01 becomes oxidized (loses electron) becomes reduced (gains electron) Figure 7.UN01 In-text figure, NaCl redox reaction, p. 136 7
8
becomes oxidized becomes reduced
Figure 7.UN03 becomes oxidized becomes reduced Figure 7.UN03 In-text figure, cellular respiration redox reaction, p. 137 8
9
Stepwise Energy Harvest via NAD+ and the Electron Transport Chain
_____ ______________ __________ ______________________________________________________________________ © 2014 Pearson Education, Inc. 9
10
2 e− 2 H 2 e− H NAD NADH H Dehydrogenase Reduction of NAD
Figure 7.4 2 e− 2 H 2 e− H NAD NADH H Dehydrogenase Reduction of NAD 2[H] (from food) H Oxidation of NADH Nicotinamide (reduced form) Nicotinamide (oxidized form) Figure 7.4 NAD+ as an electron shuttle 10
11
(a) Uncontrolled reaction (b) Cellular respiration
Figure 7.5 H2 O2 2 H O2 Controlled release of energy 2 H 2 e− ATP ATP Explosive release Electron transport chain Free energy, G Free energy, G ATP 2 e− Figure 7.5 An introduction to electron transport chains O2 2 H H2O H2O (a) Uncontrolled reaction (b) Cellular respiration 11
12
The Stages of Cellular Respiration: A Preview
__________________________________________________________________________ ____________________________________________________________ _____________________ _________________ Animation: Cellular Respiration © 2014 Pearson Education, Inc. 12
13
Electrons via NADH and FADH2 Electrons via NADH Oxidative
Figure 7.6-3 Electrons via NADH and FADH2 Electrons via NADH Oxidative phosphorylation: electron transport and chemiosmosis Pyruvate oxidation Glycolysis Citric acid cycle Glucose Pyruvate Acetyl CoA CYTOSOL MITOCHONDRION Figure An overview of cellular respiration (step 3) ATP ATP ATP Substrate-level Substrate-level Oxidative 13
14
Concept 7.2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate
_________________________________ __________________________ ____________________ _________________ ____________________________ © 2014 Pearson Education, Inc. 14
15
Citric acid cycle Oxidative phosphorylation Pyruvate oxidation
Figure 7.UN06 Citric acid cycle Oxidative phosphorylation Pyruvate oxidation Glycolysis Figure 7.UN06 In-text figure, mini-map, glycolysis, p. 140 ATP ATP ATP 15
16
Energy Investment Phase
Figure 7.8 Energy Investment Phase Glucose 2 ADP 2 P 2 ATP used Energy Payoff Phase 4 ADP 4 P 4 ATP formed 2 NAD 4 e− 4 H 2 NADH 2 H Figure 7.8 The energy input and output of glycolysis 2 Pyruvate 2 H2O Net Glucose 2 Pyruvate 2 H2O 4 ATP formed − 2 ATP used 2 ATP 2 NAD 4 e− 4 H 2 NADH 2 H 16
17
Glycolysis: Energy Investment Phase
Figure 7.9a Glycolysis: Energy Investment Phase Glyceraldehyde 3-phosphate (G3P) ATP Glucose 6-phosphate Fructose 6-phosphate ATP Fructose 1,6-bisphosphate Glucose ADP ADP Isomerase 5 Hexokinase Phosphogluco- isomerase Phospho- fructokinase Aldolase Dihydroxyacetone phosphate (DHAP) 1 4 2 3 Figure 7.9a A closer look at glycolysis (part 1: investment phase) 17
18
Glycolysis: Energy Investment Phase
Figure 7.9aa-3 Glycolysis: Energy Investment Phase ATP Glucose 6-phosphate Fructose 6-phosphate Glucose ADP Hexokinase Phosphogluco- isomerase 1 Figure 7.9aa-3 A closer look at glycolysis (part 1a, step 3) 2 18
19
Glycolysis: Energy Investment Phase
Figure 7.9ab-3 Glycolysis: Energy Investment Phase Glyceraldehyde 3-phosphate (G3P) Fructose 6-phosphate Fructose 1,6-bisphosphate ATP ADP Isomerase 5 Phospho- fructokinase Aldolase Dihydroxyacetone phosphate (DHAP) 4 Figure 7.9ab-3 A closer look at glycolysis (part 1b, step 3) 3 19
20
Glycolysis: Energy Payoff Phase
Figure 7.9b Glycolysis: Energy Payoff Phase 2 ATP 2 ATP 2 NADH 2 H2O Glyceraldehyde 3-phosphate (G3P) 2 ADP 2 NAD 2 H 2 ADP 2 2 2 2 2 Triose phosphate dehydrogenase Phospho- glycerokinase Phospho- glyceromutase Enolase Pyruvate kinase 2 P i 9 1,3-Bisphospho- glycerate 7 3-Phospho- glycerate 8 2-Phospho- glycerate Phosphoenol- pyruvate (PEP) 10 Pyruvate 6 Figure 7.9b A closer look at glycolysis (part 2: payoff phase) 20
21
Glycolysis: Energy Payoff Phase
Figure 7.9ba-3 Glycolysis: Energy Payoff Phase 2 ATP 2 NADH Glyceraldehyde 3-phosphate (G3P) 2 NAD 2 H 2 ADP 2 2 Triose phosphate dehydrogenase Phospho- glycerokinase 2 P i Isomerase 1,3-Bisphospho- glycerate 7 3-Phospho- glycerate 5 6 Aldolase Dihydroxyacetone phosphate (DHAP) 4 Figure 7.9ba-3 A closer look at glycolysis (part 2a, step 3) 21
22
Glycolysis: Energy Payoff Phase
Figure 7.9bb-3 Glycolysis: Energy Payoff Phase 2 ATP 2 H2O 2 ADP 2 2 2 2 Phospho- glyceromutase Enolase Pyruvate kinase 9 3-Phospho- glycerate 8 2-Phospho- glycerate Phosphoenol- pyruvate (PEP) 10 Pyruvate Figure 7.9bb-3 A closer look at glycolysis (part 2b, step 3) 22
23
ENERGY-REQUIRING STEPS fructose–1,6–bisphosphate
Glycolysis ENERGY-REQUIRING STEPS OF GLYCOLYSIS glucose ATP 2 ATP invested ADP P glucose–6–phosphate P fructose–6–phosphate ATP ADP P P fructose–1,6–bisphosphate DHAP Fig. 8-4b, p.127
24
ENERGY-RELEASING STEPS 1,3–bisphosphoglycerate 1,3–bisphosphoglycerate
Glycolysis ENERGY-RELEASING STEPS OF GLYCOLYSIS P P PGAL PGAL NAD+ NAD+ NADH NADH Pi Pi P P P P 1,3–bisphosphoglycerate 1,3–bisphosphoglycerate substrate-level phsphorylation ADP ADP ATP ATP 2 ATP PRODUCED P P 3–phosphoglycerate 3–phosphoglycerate Fig. 8-4c, p.127
25
Glycolysis P P 2–phosphoglycerate 2–phosphoglycerate H2O H2O P P PEP
substrate-level phsphorylation ADP ADP ATP ATP 2 ATP produced pyruvate pyruvate Fig. 8-4d, p.127
26
Energy-Requiring Steps
2 ATP invested Energy-Requiring Steps of Glycolysis glucose ADP P ATP glucose-6-phosphate fructose-6-phosphate P ATP fructose1,6-bisphosphate P ADP PGAL P Figure 8-4(2) Page 127
27
1,3-bisphosphoglycerate 1,3-bisphosphoglycerate
PGAL PGAL NAD+ NAD+ Pi NADH Pi NADH P P P P 1,3-bisphosphoglycerate 1,3-bisphosphoglycerate ADP ADP ATP ATP P P 3-phosphoglycerate 3-phosphoglycerate P P 2-phosphoglycerate 2-phosphoglycerate H2O H2O P P PEP PEP ADP ADP ATP ATP pyruvate pyruvate Figure 8-4 Page 127
28
Concept 7.3: After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules _________________________________________________ ________________________________________________________________________________________________________________ _________________________________________________________________ © 2014 Pearson Education, Inc. 28
29
Citric acid cycle Oxidative phosphorylation Pyruvate oxidation
Figure 7.UN07 Citric acid cycle Oxidative phosphorylation Pyruvate oxidation Glycolysis Figure 7.UN07 In-text figure, mini-map, pyruvate oxidation, p. 142 ATP ATP ATP 29
30
Overview of Aerobic Respiration
CYTOPLASM glucose ATP 2 ATP 4 Glycolysis e- + H+ (2 ATP net) 2 NADH 2 pyruvate e- + H+ 2 CO2 Overview of Aerobic Respiration 2 NADH e- + H+ 8 NADH 4 CO2 KrebsCycle e- + H+ 2 ATP 2 FADH2 e- Electron Transfer Phosphorylation 32 ATP H+ water e- + oxygen Typical Energy Yield: 36 ATP Fig. 8-3, p. 135
31
Citric acid cycle Figure 7.10 Pyruvate (from glycolysis,
2 molecules per glucose) CYTOSOL CO2 NAD CoA NADH H Acetyl CoA MITOCHONDRION CoA CoA Citric acid cycle Figure 7.10 An overview of pyruvate oxidation and the citric acid cycle 2 CO2 FADH2 3 NAD FAD 3 NADH 3 H ADP P i ATP 31
32
2 molecules per glucose) CYTOSOL
Figure 7.10a Pyruvate (from glycolysis, 2 molecules per glucose) CYTOSOL CO2 NAD CoA Figure 7.10a An overview of pyruvate oxidation and the citric acid cycle (part 1: pyruvate oxidation) NADH H Acetyl CoA MITOCHONDRION CoA 32
33
Citric acid cycle Acetyl CoA CoA CoA 2 CO2 FADH2 3 NAD 3 NADH FAD
Figure 7.10b Acetyl CoA CoA CoA Citric acid cycle 2 CO2 FADH2 3 NAD Figure 7.10b An overview of pyruvate oxidation and the citric acid cycle (part 2: citric acid cycle) 3 NADH FAD 3 H ADP P i ATP 33
34
Citric acid cycle Oxidative phosphorylation Pyruvate oxidation
Figure 7.UN08 Citric acid cycle Oxidative phosphorylation Pyruvate oxidation Glycolysis Figure 7.UN08 In-text figure, mini-map, citric acid cycle, p. 143 ATP ATP ATP 34
35
Citric acid cycle Figure 7.11-6 Acetyl CoA 1 Oxaloacetate 8 2 Malate
CoA-SH NADH 1 H H2O NAD Oxaloacetate 8 2 Malate Citrate Isocitrate NAD Citric acid cycle 3 NADH 7 H H2O CO2 Fumarate CoA-SH -Ketoglutarate Figure A closer look at the citric acid cycle (step 8) 6 4 CoA-SH 5 FADH2 CO2 NAD FAD Succinate P NADH i GTP GDP Succinyl CoA H ADP ATP formation ATP 35
36
Start: Acetyl CoA adds its two-carbon group to oxaloacetate, producing
Figure 7.11a Start: Acetyl CoA adds its two-carbon group to oxaloacetate, producing citrate; this is a highly exergonic reaction. Acetyl CoA CoA-SH 1 H2O Oxaloacetate Figure 7.11a A closer look at the citric acid cycle (part 1) 2 Citrate Isocitrate 36
37
Isocitrate is oxidized; NAD is reduced.
Figure 7.11b Isocitrate Redox reaction: Isocitrate is oxidized; NAD is reduced. NAD NADH 3 H CO2 CO2 release CoA-SH -Ketoglutarate 4 Figure 7.11b A closer look at the citric acid cycle (part 2) CO2 release CO2 NAD Redox reaction: After CO2 release, the resulting four-carbon molecule is oxidized (reducing NAD), then made reactive by addition of CoA. NADH Succinyl CoA H 37
38
Succinate is oxidized; FAD is reduced.
Figure 7.11c Fumarate 6 CoA-SH 5 FADH2 FAD Redox reaction: Succinate is oxidized; FAD is reduced. Succinate P i GTP GDP Succinyl CoA Figure 7.11c A closer look at the citric acid cycle (part 3) ADP ATP formation ATP 38
39
Redox reaction: Malate is oxidized; NAD is reduced. Oxaloacetate 8
Figure 7.11d Redox reaction: Malate is oxidized; NAD is reduced. NADH H NAD 8 Oxaloacetate Malate 7 Figure 7.11d A closer look at the citric acid cycle (part 4) H2O Fumarate 39
40
___________________________________________________________________
______________________________________________________________________________________________________ © 2014 Pearson Education, Inc. 40
41
____________________________
© 2014 Pearson Education, Inc. 41
42
The Pathway of Electron Transport
_________________________________________________________________________ _______________________________________________________________________ ________________________________________________________________________ © 2014 Pearson Education, Inc. 42
43
Oxidative phosphorylation: electron transport and chemiosmosis Citric
Figure 7.UN09 Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle Pyruvate oxidation Glycolysis Figure 7.UN09 In-text figure, mini-map, oxidative phosphorylation, p. 144 ATP ATP ATP 43
44
Free energy (G) relative to O2 (kcal/mol)
Figure 7.12 NADH 50 2 e− NAD FADH2 Multiprotein complexes 2 e− FAD 40 I FMN II Fe•S Fe•S Q III Cyt b 30 Fe•S Cyt c1 IV Free energy (G) relative to O2 (kcal/mol) Cyt c Cyt a Cyt a3 20 Figure 7.12 Free-energy change during electron transport 10 2 e− (originally from NADH or FADH2) 2 H ½ O2 H2O 44
45
Free energy (G) relative to O2 (kcal/mol)
Figure 7.12a NADH 50 2 e− NAD FADH2 2 e− FAD Multiprotein complexes I 40 FMN II Fe•S Fe•S Q III Cyt b Free energy (G) relative to O2 (kcal/mol) Fe•S 30 Cyt c1 IV Cyt c Figure 7.12a Free-energy change during electron transport (part 1) Cyt a Cyt a3 20 2 e− 10 45
46
Free energy (G) relative to O2 (kcal/mol)
Figure 7.12b 30 Cyt c1 IV Cyt c Cyt a Cyt a3 20 Free energy (G) relative to O2 (kcal/mol) 2 e− 10 (originally from NADH or FADH2) Figure 7.12b Free-energy change during electron transport (part 2) 2 H ½ O2 H2O 46
47
__________________________________________________________
__________________________________________________________________________________________ © 2014 Pearson Education, Inc. 47
48
Chemiosmosis: The Energy-Coupling Mechanism
_________________________________________________________________________________ ______________________________________________, emphasizing capacity to do work ________________________________________________ _______________________________________ _________________________________________________________________________ © 2014 Pearson Education, Inc. 48
49
H INTERMEMBRANE SPACE Stator Rotor Internal rod Catalytic knob ADP
Figure 7.13 H INTERMEMBRANE SPACE Stator Rotor Internal rod Catalytic knob Figure 7.13 ATP synthase, a molecular mill ADP P ATP MITOCHONDRIAL MATRIX i 49
50
Oxidative phosphorylation: electron transport and chemiosmosis Citric
Figure 7.UN09 Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle Pyruvate oxidation Glycolysis Figure 7.UN09 In-text figure, mini-map, oxidative phosphorylation, p. 146 ATP ATP ATP 50
51
Electron transport chain Oxidative phosphorylation
Figure 7.14 H H Protein complex of electron carriers H H Cyt c IV Q III I ATP synthase II 2 H ½ O2 H2O FADH2 FAD NADH NAD Figure 7.14 Chemiosmosis couples the electron transport chain to ATP synthesis ADP P ATP i (carrying electrons from food) H 1 Electron transport chain 2 Chemiosmosis Oxidative phosphorylation 51
52
Electron transport chain
Figure 7.14a H H Protein complex of electron carriers H Cyt c IV Q III I II 2 H ½ O2 H2O FADH2 FAD Figure 7.14a Chemiosmosis couples the electron transport chain to ATP synthesis (part 1: electron transport chain) NAD NADH (carrying electrons from food) 1 Electron transport chain 52
53
2 ATP synthase Chemiosmosis H H ADP ATP i P Figure 7.14b
Figure 7.14b Chemiosmosis couples the electron transport chain to ATP synthesis (part 2: chemiosmosis) ADP P ATP i H 2 Chemiosmosis 53
54
Video: ATP Synthase 3-D Side View
Video: ATP Synthase 3-D Top View © 2014 Pearson Education, Inc. 54
55
An Accounting of ATP Production by Cellular Respiration
____________________________: ________________________________________ _____________________________________________________ There are several reasons why the number of ATP molecules is not known exactly © 2014 Pearson Education, Inc. 55
56
Electron shuttles span membrane MITOCHONDRION 2 NADH CYTOSOL or
Figure 7.15 Electron shuttles span membrane MITOCHONDRION 2 NADH CYTOSOL or 2 FADH2 2 NADH 2 NADH 6 NADH 2 FADH2 Glycolysis Pyruvate oxidation 2 Acetyl CoA Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle 2 Pyruvate Glucose 2 ATP Figure 7.15 ATP yield per molecule of glucose at each stage of cellular respiration 2 ATP about 26 or 28 ATP About 30 or 32 ATP Maximum per glucose: 56
57
Electron shuttles span membrane 2 NADH or 2 FADH2 2 NADH Glycolysis 2
Figure 7.15a Electron shuttles span membrane 2 NADH or 2 FADH2 2 NADH Glycolysis 2 Pyruvate Glucose Figure 7.15a ATP yield per molecule of glucose at each stage of cellular respiration (part 1: glycolysis) 2 ATP 57
58
Pyruvate oxidation 2 Acetyl CoA Citric acid cycle
Figure 7.15b 2 NADH 6 NADH 2 FADH2 Pyruvate oxidation 2 Acetyl CoA Citric acid cycle Figure 7.15b ATP yield per molecule of glucose at each stage of cellular respiration (part 2: citric acid cycle) 2 ATP 58
59
2 NADH or 2 FADH2 2 NADH 6 NADH 2 FADH2 Oxidative phosphorylation:
Figure 7.15c 2 NADH or 2 FADH2 2 NADH 6 NADH 2 FADH2 Oxidative phosphorylation: electron transport and chemiosmosis Figure 7.15c ATP yield per molecule of glucose at each stage of cellular respiration (part 3: oxidative phosphorylation) about 26 or 28 ATP 59
60
About Maximum per glucose: 30 or 32 ATP Figure 7.15d
Figure 7.15d ATP yield per molecule of glucose at each stage of cellular respiration (part 4: yield per glucose) 60
61
Concept 7.5: Fermentation and anaerobic respiration enable cells to produce ATP without the use of oxygen ____________________________________ _______________________________________________________________________ © 2014 Pearson Education, Inc. 61
62
______________________________________________________________________
_____________________________________________________________________________________________ © 2014 Pearson Education, Inc. 62
63
Types of Fermentation ______________________________________________________, (can be reused by glycolysis) ______________________________________________________ © 2014 Pearson Education, Inc. 63
64
_______________________________________
___________________________________________________ ________________________________________________________ Animation: Fermentation Overview © 2014 Pearson Education, Inc. 64
65
(a) Alcohol fermentation (b) Lactic acid fermentation
Figure 7.16 2 ADP 2 P 2 ADP 2 i 2 ATP P i 2 ATP Glucose Glycolysis Glucose Glycolysis 2 Pyruvate 2 NAD 2 NADH 2 CO2 2 NAD 2 NADH 2 H 2 H 2 Pyruvate Figure 7.16 Fermentation 2 Ethanol 2 Acetaldehyde 2 Lactate (a) Alcohol fermentation (b) Lactic acid fermentation 65
66
(a) Alcohol fermentation
Figure 7.16a 2 ADP 2 P 2 ATP i Glucose Glycolysis 2 Pyruvate 2 NAD 2 NADH 2 CO2 2 H Figure 7.16a Fermentation (part 1: alcohol) 2 Acetaldehyde 2 Ethanol (a) Alcohol fermentation 66
67
(b) Lactic acid fermentation
Figure 7.16b 2 ADP 2 P 2 ATP i Glucose Glycolysis 2 NAD 2 NADH 2 H 2 Pyruvate Figure 7.16b Fermentation (part 2: lactic acid) 2 Lactate (b) Lactic acid fermentation 67
68
_____________________________________________________________________
© 2014 Pearson Education, Inc. 68
69
Comparing Fermentation with Anaerobic and Aerobic Respiration
________________________ __________ __________________________ ____________________________________________________________________ © 2014 Pearson Education, Inc. 69
70
___________________________________________________
_______________________________________________________ © 2014 Pearson Education, Inc. 70
71
Ethanol, lactate, or other products Citric acid cycle
Figure 7.17 Glucose Glycolysis CYTOSOL Pyruvate No O2 present: Fermentation O2 present: Aerobic cellular respiration MITOCHONDRION Ethanol, lactate, or other products Acetyl CoA Figure 7.17 Pyruvate as a key juncture in catabolism Citric acid cycle 71
72
The Evolutionary Significance of Glycolysis
_____________________________________________________________ _____________________________________________________________________ © 2014 Pearson Education, Inc. 72
73
The Versatility of Catabolism
_________________________________________ _______________________________________________________________________________ © 2014 Pearson Education, Inc. 73
74
__________________________________________________
_________________________________________________________ © 2014 Pearson Education, Inc. 74
75
Amino acids Fatty acids Citric acid cycle Oxidative phosphorylation
Figure Proteins Carbohydrates Fats Amino acids Sugars Glycerol Fatty acids Glycolysis Glucose Glyceraldehyde 3- P NH3 Pyruvate Figure The catabolism of various molecules from food (step 5) Acetyl CoA Citric acid cycle Oxidative phosphorylation 75
76
Figure 7.UN10b Figure 7.UN10b Skills exercise: making a bar graph and interpreting the data (part 2) 76
77
Inputs Glycolysis Glucose ATP 2 NADH
Figure 7.UN11 Inputs Outputs Glycolysis Glucose 2 Pyruvate 2 ATP 2 NADH Figure 7.UN11 Summary of key concepts: pyruvate 77
78
CO2 Inputs Outputs 2 Pyruvate 2 Acetyl CoA 2 ATP 8 NADH Citric acid
Figure 7.UN12 Inputs Outputs 2 Pyruvate 2 Acetyl CoA 2 ATP 8 NADH Citric acid cycle 2 Oxaloacetate CO2 6 2 FADH2 Figure 7.UN12 Summary of key concepts: citric acid cycle 78
79
(carrying electrons from food)
Figure 7.UN13a INTERMEMBRANE SPACE H H Protein complex of electron carriers H Cyt c IV Q III I Figure 7.UN13a Summary of key concepts: oxidative phosphorylation (part 1) II 2 H ½O2 H2O FADH2 FAD NADH NAD MITOCHONDRIAL MATRIX (carrying electrons from food) 79
80
INTER- MEMBRANE SPACE H MITO- ATP CHONDRIAL synthase MATRIX ADP ATP
Figure 7.UN13b INTER- MEMBRANE SPACE H MITO- CHONDRIAL MATRIX ATP synthase Figure 7.UN13b Summary of key concepts: oxidative phosphorylation (part 2) ADP P H ATP i 80
81
Overview of Aerobic Respiration
CYTOPLASM glucose ATP 2 ATP 4 Glycolysis e- + H+ (2 ATP net) 2 NADH 2 pyruvate e- + H+ 2 CO2 Overview of Aerobic Respiration 2 NADH e- + H+ 8 NADH 4 CO2 KrebsCycle e- + H+ 2 ATP 2 FADH2 e- Electron Transfer Phosphorylation 32 ATP H+ water e- + oxygen Typical Energy Yield: 36 ATP Fig. 8-3, p. 135
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.