Presentation is loading. Please wait.

Presentation is loading. Please wait.

ECE-1466 Modern Optics Course Notes Part 5

Similar presentations


Presentation on theme: "ECE-1466 Modern Optics Course Notes Part 5"— Presentation transcript:

1 ECE-1466 Modern Optics Course Notes Part 5
Prof. Charles A. DiMarzio Northeastern University Spring 2002 Mayl 02002 Chuck DiMarzio, Northeastern University

2 Basic Equations of Interference
Im E Re E Mayl 02002 Chuck DiMarzio, Northeastern University

3 Chuck DiMarzio, Northeastern University
Mach Zehnder (1) Example M2 BS1 Source, s Gas Cell n>1 M1 BS2 Straight-Line Layouts: Transit Time s BS1 M1 BS2 s BS1 M2 BS2 Geometric s BS1 M1 BS2 s BS1 M2 BS2 Mayl 02002 Chuck DiMarzio, Northeastern University

4 Chuck DiMarzio, Northeastern University
Mach Zehnder (2) Straight-Line Layout: Transit Time s BS1 M1 BS2 s BS1 M2 BS2 q Diffuser Mayl 02002 Chuck DiMarzio, Northeastern University

5 Chuck DiMarzio, Northeastern University
Optical Testing M1, Known Reference Spheres 4-wave difference Same with 2-wave bump -50 50 0.5 1 1.5 2 -50 50 0.5 1 1.5 BS M2, Mirror Under Test Flats with 8-wave tilt Same with 2-wave bump -50 50 0.5 1 1.5 2 -50 50 0.5 1 1.5 2 Mayl 02002 Chuck DiMarzio, Northeastern University

6 Fabry-Perot Interferometer (1)
Straight Line Model Multiple Sources, with decreasing amplitudes (usually) and increasing distances (and thus phases). Mayl 02002 Chuck DiMarzio, Northeastern University

7 Fabry-Perot Interferometer (2)
10mm 650nm 600nm 460 470 480 490 500 0.05 0.1 0.15 0.2 0.25 f, Freq., THz T, Transmission FSR d f Mayl 02002 Chuck DiMarzio, Northeastern University

8 Chuck DiMarzio, Northeastern University
Laser Tuning (1) Gain Lines Depend on Medium Often Multiple 10’s to 100’s of THz. Cavity Modes qc/2L q is an inteter L is cavity length Free Spectral Range c/2L (Mode Spacing) Gain f Cavity Modes f Mayl 02002 Chuck DiMarzio, Northeastern University

9 Chuck DiMarzio, Northeastern University
Laser Tuning (2) Fine Tuning Cavity Length Usually Piezoelectric Intracavity Modulator Single Mode Intracavity Etalon or Short Cavity Single Gain Line Prism or Grating Gain f Cavity Modes f qi Mayl 02002 Chuck DiMarzio, Northeastern University

10 Chuck DiMarzio, Northeastern University
Etalon Transmission Only Coherent Sources contribute to the fringes Im (1/t) Re (1/ t) Mayl 02002 Chuck DiMarzio, Northeastern University

11 Thin Films: Three Approaches
Sum the multiple Reflections Use Wave Equation and Boundary Conditions Network Approach with Fresnel Coefficients EA EB EC ED E1 E2 E3 E4 E’1 E’2 E’3 E’4 Mayl 02002 Chuck DiMarzio, Northeastern University

12 Chuck DiMarzio, Northeastern University
Thin Film Matrices (2) M1 M4 M=M1M2M3M4 Mayl 02002 Chuck DiMarzio, Northeastern University

13 High Reflection Stack (1)
Mayl 02002 Chuck DiMarzio, Northeastern University

14 High Reflection Stack (2)
Phase=0 p+p 2p+0 3p+p Sign of Reflectivity is inverted on going from High to Low Index. Mayl 02002 Chuck DiMarzio, Northeastern University

15 Anti-Reflection Coatings
Examples R Uncoated Glass 4% Two Layers One Layer Phase =0 p Three Layers Quarter-Wave Coating Magnesium Flouride n=1.35 is a close match, low cost and durable. l Violet Red Mayl 02002 Chuck DiMarzio, Northeastern University

16 Interference Magnitudes
Mayl 02002 Chuck DiMarzio, Northeastern University

17 Quadrature Imaging Concept
Balanced Mixing November 18

18 Quadrature Images from Original Setup
One-Cell Embryo Two-Cell Embryo Amplitude Phase Amplitude Phase Multi-Cell Blastocyst Amplitude Phase Images by Dan Hogenboom, NU November 18

19 Quadrature Imaging Microscope Design
Design Features 4 CCD Cameras - Balanced Mixing 10x and 20x Interchangeable Objectives Virtual Pinhole Focusing System November 18

20 Original Setup November 18

21 Experiment vs. Analytical Model
Fiber Model: n= Position - mm/pixel -50 50 20 40 60 80 100 -3 -2 -1 1 2 3 Fiber in Sugar Water Position - 0.9mm/pixel 50 100 150 200 250 300 350 -3 -2 -1 1 2 3 November 18

22 Unwrapped Phase Image of a Mouse Oocyte
Amplitude Unwrapped Phase Phase 10027.jpg 3993.jpg 10028.jpg Mayl 02002 Chuck DiMarzio, Northeastern University

23 How Could QTM Count Cells in Compact Embryo?
QTM Phase DIC Assumed Index Profile Before Compaction 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 -3 -2 -1 1 2 3 M10026.m M10026.m Assumed Index Profile During Compaction 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.5 1 1.5 2 2.5 M10026.m M10026.m Mayl 02002 Chuck DiMarzio, Northeastern University

24 Chuck DiMarzio, Northeastern University
Third Generation QTM Q . Mayl 02002 Chuck DiMarzio, Northeastern University


Download ppt "ECE-1466 Modern Optics Course Notes Part 5"

Similar presentations


Ads by Google