Presentation is loading. Please wait.

Presentation is loading. Please wait.

HRI Winter School 2015, Allahabad Interferometry in the Quantum Hall Effect Regime Lecture 2: Quantum Electronics Tools exercises Go over equations Naïve.

Similar presentations


Presentation on theme: "HRI Winter School 2015, Allahabad Interferometry in the Quantum Hall Effect Regime Lecture 2: Quantum Electronics Tools exercises Go over equations Naïve."— Presentation transcript:

1 HRI Winter School 2015, Allahabad Interferometry in the Quantum Hall Effect Regime Lecture 2: Quantum Electronics Tools exercises Go over equations Naïve calc for HBT Weizmann Institute of Science, Israel Department of Cond. Mat. Physics Itamar Sivan

2 Plan for the day What is quantum electronics? Formulation of quantum Kirchhoff rules Applying to real systems (MZI, HBT)

3 Quantum electronics What is quantum electronics?

4 Resistivity 𝑇 𝑇 5 Temperature dependence, depends on temperature
𝜌(𝑇) Temperature Constant

5 Quantum electronics Ideal conductor – no scattering

6 Quantum electronics Ψ 𝑖 (𝑥)= 𝑑𝜀 1 2𝜋ℏ𝑣 𝜀 𝑎 𝑖 𝜀 𝑒 𝑖𝑘 𝜀 𝑥
Ψ 𝑖 (𝑥)= 𝑘 𝑎 𝑖,𝑘 1 𝐿 𝑒 𝑖𝑘𝑥 Ψ 𝑖 (𝑥)= 𝑑𝜀 1 2𝜋ℏ𝑣 𝜀 𝑎 𝑖 𝜀 𝑒 𝑖𝑘 𝜀 𝑥 𝐼 𝑖 (𝑥)= 𝑒ℏ 2𝑚 Ψ 𝑖 † 𝑥 1 𝑖 𝜕 Ψ 𝑖 𝑥 𝜕𝑥 + 1 −𝑖 𝜕 Ψ 𝑖 † 𝑥 𝜕𝑥 Ψ 𝑖 𝑥 𝑎 𝑖 † 𝜀′ 𝑎 𝑗 𝜀 = 𝑓 𝑖 𝜀 ∙ 𝛿 𝑖𝑗 𝛿 𝜀− 𝜀 ′ 𝑓 𝑖 𝜀 = 1 1+ 𝑒 (𝜀− 𝜇 𝑖 )/𝑘𝑇 −∞ +∞ 𝑑𝜀∙ 𝑓 𝑖 𝜀 − 𝑓 𝑗 𝜀 = 𝜇 𝑖 - 𝜇 𝑗 ≡𝑒𝑉

7 Quantum electronics Ideal conductor with a single scatterer
𝑆= 𝑟 𝑡 𝑡′ 𝑟′ S is Unitary: 𝑆 † 𝑆=𝑆 𝑆 † =𝕀 𝑟 2 = 𝑟′ 2 = 1− 𝑡 2 = 1− 𝑡′ 2 𝑟 2 ≡𝑅 𝑟 ′ ′ 2 ≡𝑅′ 𝑡 2 ≡𝑇 𝑡′ 2 ≡𝑇′

8 Quantum electronics 𝐺 0 = 𝑒 2 ℎ 𝐼 𝑖 = 𝑒 2 ℎ 𝑉 𝐼 𝑖 =𝑇 𝑒 2 ℎ 𝑉 𝐺=𝑇∙ 𝐺 0
Ideal 1D conductor: Ideal 1D conductor with scatterer: 𝐺 0 = 𝑒 2 ℎ 𝐼 𝑖 = 𝑒 2 ℎ 𝑉 𝐼 𝑖 =𝑇 𝑒 2 ℎ 𝑉 𝐺=𝑇∙ 𝐺 0 Can we understand it ‘classically’? 𝑅= ℎ 𝑒 2 ∙ 1 𝑇 = ℎ 𝑒 2 + ℎ 𝑒 2 1−𝑇 𝑇

9 Quantum electronics Formulation of quantum Kirchhoff rules

10 Quantum electronics Multi-channel scattering
𝑆= 𝑟 11 𝑡 12 𝑡 21 𝑟 ⋯ 𝑡 1𝑁 ⋮ 𝑡 𝑁1 ⋱ 𝑟 𝑁𝑁 S is Unitary: 𝑆 † 𝑆=𝑆 𝑆 † =𝕀 𝑟 𝑖𝑖 2 ≡ 𝑅 𝑖𝑖 𝑡 𝑖𝑗 2 ≡ 𝑇 𝑖𝑗 𝑟 𝑖𝑖 2 =1− 𝑗 𝑡 𝑖𝑗 2

11 Quantum electronics The quantum of conductance 𝐼 = 𝑒 2 ℎ 𝑉
Landauer’s formula: 𝐼 = 𝑒 2 ℎ 𝑇∙𝑉 Landauer-Buttiker (Quantum Kirchhoff): 𝐼 𝛼 = 𝛽 𝐺 𝛼𝛽 𝑉 𝛽 𝐺 𝛼𝛽 = 𝑒 2 ℎ 1− 𝑅 𝛼𝛼 𝑒 2 ℎ 𝑇 𝛼𝛽 , 𝛼≠𝛽

12 Quantum electronics Applying QKR to real systems (MZI, HBT)

13 Quantum electronics Quantum Point contact

14 A QPC device

15 Quantum electronics Mach-Zehnder interferometer

16 The Mach-Zehnder interferometer
Interference is observed as function of the path difference 1 2 3 𝐴 𝐷1,𝐿 =𝑡𝑡 𝑒 𝑖𝑘 𝑥 𝑢 + 𝑟𝑟 𝑒 𝑖𝑘 𝑥 𝑑 𝐴 𝐷1,𝐿 2 = 𝑇 2 + 𝑅 2 +2𝑅𝑇 cos 𝑥 𝑑 − 𝑥 𝑢

17 The Mach-Zehnder interferometer
X 𝐵 = 𝜙

18 The Mach-Zehnder interferometer
S BS1 M1 M2 BS2 D2 J. Yang et al., nature 2003

19 Quantum electronics Hanbury-Brown & Twiss interferometer

20 The Mach-Zehnder interferometer

21 The Mach-Zehnder interferometer
X 𝐵 = 𝜙

22 The Mach-Zehnder interferometer
𝐴 𝐷1,𝑆 =𝑡𝑡 + 𝑟𝑟 𝑒 𝑖2𝜋𝐴𝐵 𝐴 𝐷1,𝑆 2 = 𝑇 2 + 𝑅 2 +2𝑅𝑇 cos 2𝜋𝐴𝐵

23 The Hanbury-Brown & Twiss interferometer

24 actual sample

25 actual sample (no bridges)
path length ~8µm

26 The Hanbury-Brown & Twiss interferometer
upper Mach-Zehnder lower Mach-Zehnder ( 0.75 /hour, 1.00 /mV ) ( 0.69 /hour, 0.73 /mV ) Neder et al., Nature 2007

27 The Hanbury-Brown & Twiss interferometer
( 1.41 /mV, 1.72 /hour ) Neder et al., Nature 2007

28 The Hanbury-Brown & Twiss interferometer
2.0 1.5 fringes / mV 1.0 0.5 0.5 1.0 1.5 fringes per hour Neder et al., Nature 2007

29 Zoom out Defined quantum electronics
Formulated the quantum Kirchhoff rules Applyed to real systems (MZI, HBT)

30 Course plan Overview of the field & Motivation Formalism for
Mesoscopic problems I -> G -> see oscillating -> diphase it -> formulate in classical terms -> how can we retrieve a purely classical result? Controlled dephasing & Quantum Erasers Interaction effects


Download ppt "HRI Winter School 2015, Allahabad Interferometry in the Quantum Hall Effect Regime Lecture 2: Quantum Electronics Tools exercises Go over equations Naïve."

Similar presentations


Ads by Google