Download presentation
Presentation is loading. Please wait.
1
Instructor: Alexander Stoytchev
CprE 281: Digital Logic Instructor: Alexander Stoytchev
2
State Assignment Problem
CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev
3
Administrative Stuff Homework 9 is due on Monday
4
Administrative Stuff Homework 10 is out
It is due on Monday Nov 4pm
5
Quick Review
6
The general form of a synchronous sequential circuit
W Combinational Combinational Flip-flops Z circuit circuit Q Clock [ Figure 6.1 from the textbook ]
7
Moore Type W Combinational Combinational Flip-flops Z circuit circuit
Q Clock
8
Mealy Type W Combinational Combinational Flip-flops Z circuit circuit
Q Clock
9
Moore Machine The machine’s current state and current inputs are used to decide which next state to transition into. The machine’s current state decides the current output.
10
Mealy Machine The machine’s current state and current inputs are used to decide which next state to transition into. The machine’s current state and current input values decide the current output.
11
Example #1
12
C: z = 1 Reset B: z = 0 A: z = 0 w = 1 We need to find both the next state logic and the output logic implied by this machine. [ Figure 6.3 from the textbook ]
13
Next state Present Output state A B C z w = w = 1 C: z = 1 Reset
B: z = 0 A: z = 0 w = 1 Next state Present Output state z w = w = 1 A B C
14
Next state Present Output state A A B B A C C A C 1 z w = w = 1
Reset B: z = 0 A: z = 0 w = 1 Next state Present Output state z w = w = 1 A A B B A C C A C 1 [ Figure 6.4 from the textbook ]
15
How to represent the States?
One way is to encode each state with a 2-bit binary number A ~ 00 B ~ 01 C ~ 10
16
How to represent the states?
One way is to encode each state with a 2-bit binary number A ~ 00 B ~ 01 C ~ 10 How many flip-flops do we need?
17
Let’s use two flip flops to hold the state machine’s state
18
Y y 1 1 Y y 2 2 Clock
19
We will call y1 and y2 the present state variables.
Clock We will call y1 and y2 the present state variables. We will call Y1 and Y2 the next state variables. [ Figure 6.5 from the textbook ]
20
Two zeros on the output JOINTLY represent state A.
Y y 1 1 Y y 2 2 Clock Two zeros on the output JOINTLY represent state A.
21
This flip-flop output pattern represents state B.
1 Y y 1 1 Y y 2 2 Clock This flip-flop output pattern represents state B.
22
This flip-flop output pattern represents state C.
Y y 1 1 1 Y y 2 2 Clock This flip-flop output pattern represents state C.
23
What does this flip-flop output pattern represent?
1 Y y 1 1 1 Y y 2 2 Clock What does this flip-flop output pattern represent?
24
This would be state D, but we don't have one
1 Y y 1 1 1 Y y 2 2 Clock This would be state D, but we don't have one in this example. So this is an impossible state.
25
We will call y1 and y2 the present state variables.
Next State Logic Output Logic z Y y 2 2 Clock We will call y1 and y2 the present state variables. We will call Y1 and Y2 the next state variables. [ Figure 6.5 from the textbook ]
26
We will call y1 and y2 the present state variables.
Q(t+1) = Y2Y1 Q(t) = y2y1 Y y 1 1 w Next State Logic Output Logic z Y y 2 2 Clock We will call y1 and y2 the present state variables. We will call Y1 and Y2 the next state variables. [ Figure 6.5 from the textbook ]
27
We need to find logic expressions for
Y y 1 1 w Next State Logic Output Logic z Y y 2 2 Clock We need to find logic expressions for Y1(w, y1, y2), Y2(w, y1, y2), and z(y1, y2). [ Figure 6.5 from the textbook ]
28
We need to find logic expressions for
Y y 1 1 w Next State Logic Output Logic z Y y 2 2 Clock We need to find logic expressions for Y1(w, y1, y2), Y2(w, y1, y2), and z(y1, y2). [ Figure 6.5 from the textbook ]
29
Next state Present Output state z w = w = 1 A A B B A C C A C 1 Suppose we encoded our states in the same order in which they were labeled: A ~ 00 B ~ 01 C ~ 10 [ Figure 6.4 from the textbook ]
30
The finite state machine will never reach a state encoded as 11.
Next state Present Output state z w = w = 1 A A B B A C C A C 1 Next state Present Output state w = w = 1 z A 00 The finite state machine will never reach a state encoded as 11. B 01 C 10 11 [ Figure 6.6 from the textbook ]
31
Next state Present Output state A A B B A C C A C 1 z w = w = 1
w = 1 A A B B A C C A C 1 Present Next state state w = 1 Output y Y 2 z A 00 01 B 10 C 11 dd d We arbitrarily chose these as our state encodings. We could have used others. [ Figure 6.6 from the textbook ]
32
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 [ Figure 6.6 from the textbook ]
33
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 d [ Figure 6.6 from the textbook ]
34
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 d [ Figure 6.6 from the textbook ]
35
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 d Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 d [ Figure 6.6 from the textbook ]
36
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 d Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 d [ Figure 6.6 from the textbook ]
37
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 d Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 d [ Figure 6.6 from the textbook ]
38
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 d Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 d [ Figure 6.6 from the textbook ]
39
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 d Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 d [ Figure 6.6 from the textbook ]
40
Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d
Q(t) = y2y1 and Q(t+1) = Y2Y1 w y2 y1 Y2 Y1 1 d Present Next state state w = 1 Output y Y 2 z 00 01 10 11 dd d y2 y1 z 1 d [ Figure 6.6 from the textbook ]
41
Note that the textbook draws these K-Maps
differently from all previous K-maps (the least significant bits index the columns, instead of the most significant bits). Q(t) = y2y1 and Q(t+1) = Y2Y1 w 00 01 11 10 1 y 2 d Y 1 Y 2 z w y2 y1 Y2 Y1 1 d y2 y1 z 1 d
42
Don’t care conditions simplify the combinatorial logic
w 00 01 11 10 1 y 2 d Y 1 Y 2 z Y 1 wy y 2 = + z w ( ) Ignoring don't cares Using don't cares [ Figure 6.7 from the textbook ]
43
[ Figure 6.8 from the textbook ]
44
Y2= w (y1 + y2) z = y2 Y1= w y1 y2 [ Figure 6.8 from the textbook ]
45
Lastly, we add a reset signal, which forces the machine back to its start state, which is state 00 in this case. [ Figure 6.8 from the textbook ]
46
t 1 2 3 4 5 6 7 8 9 10 Clock w y z [ Figure 6.9 from the textbook ]
47
Summary: Designing a Moore Machine
Obtain the circuit specification. Derive a state diagram. Derive the state table. Decide on a state encoding. Encode the state table. Derive the output logic and next-state logic. Add a reset signal.
48
An Alternative State Encoding For Example #1
49
A Better State Encoding
Next state Present Output state z w = w = 1 A A B B A C C A C 1 Suppose we encoded our states another way: A ~ 00 B ~ 01 C ~ 11
50
Y y 1 1 Y y 2 2 Clock
51
We will call y1 and y2 the present state variables.
Clock We will call y1 and y2 the present state variables. We will call Y1 and Y2 the next state variables. [ Figure 6.5 from the textbook ]
52
Two zeros on the output JOINTLY represent state A.
Y y 1 1 Y y 2 2 Clock Two zeros on the output JOINTLY represent state A.
53
This flip-flop output pattern represents state B.
1 Y y 1 1 Y y 2 2 Clock This flip-flop output pattern represents state B.
54
This flip-flop output pattern represents state C.
1 Y y 1 1 1 Y y 2 2 Clock This flip-flop output pattern represents state C.
55
What does this flip-flop output pattern represent?
Y y 1 1 1 Y y 2 2 Clock What does this flip-flop output pattern represent?
56
This would be state D, but we don't have one
Y y 1 1 1 Y y 2 2 Clock This would be state D, but we don't have one in this example. So this is an impossible state.
57
A Better State Encoding
Next state Present Output state z w = w = 1 A A B B A C C A C 1 Suppose we encoded our states another way: A ~ 00 B ~ 01 C ~ 11
58
A Better State Encoding
Next state Present Output state z w = w = 1 A A B B A C C A C 1 Next state Present Output state w = w = 1 A ~ 00 B ~ 01 C ~ 11 z
59
A Better State Encoding
Next state Present Output state z w = w = 1 A A B B A C C A C 1 Present Next state state w = 1 Output y 2 Y z A 00 01 B 11 C 10 dd d
60
Let's Derive the Logic Expressions
Present Next state state w = 1 Output y 2 Y z A 00 01 B 11 C 10 dd d [ Figure 6.16 from the textbook ]
61
Let's Derive the Logic Expressions
Present Next state state w = 1 Output y 2 Y z A 00 01 B 11 C 10 dd d Warning: This table does not enumerate y2y1, in the standard way, so be careful when filling out the K-Map. w 00 01 11 10 1 y 2 Y2 Y1 w 00 01 11 10 1 y 2 1 y 2 z
62
Let's Derive the Logic Expressions
Present Next state state w = 1 Output y 2 Y z A 00 01 B 11 C 10 dd d Warning: This table does not enumerate y2y1, in the standard way, so be careful when filling out the K-Map. Y2 Y1 y y y y z y 2 1 2 1 1 w y 2 00 01 11 10 00 01 11 10 1 w d d 1 1 1 1 d 1 1 1 1 d d 1 Y2(w, y2, y1) = wy1 Y1(w, y2, y1) = w z(y2, y1) = y2
63
Original State Encodings
New State Encodings Y1 Y 1 y y y y 2 1 2 1 w 00 01 11 10 w 00 01 11 10 d d 1 1 d 1 1 1 1 d Y2 Y 2 y y y y 2 1 2 1 w w 00 01 11 10 00 01 11 10 d d 1 1 1 d 1 1 1 d z y z y 1 1 y y 2 1 2 1 1 1 d 1 d 1
64
The New and Improved Circuit Diagram
Y y 2 2 Y1(w, y2, y1) = w D Q z Y2(w, y2, y1) = wy1 Q z(y2, y1) = y2 Y y 1 1 w D Q Clock Q Resetn [ Figure 6.17 from the textbook ]
65
Some may be better than others.
Main Idea Different state assignments of the same Moore machine generally lead to different circuits. Some may be better than others.
66
Example #2
67
Register Swap Controller
[ Figure 6.10 from the textbook ]
68
Register Swap Controller
Design a Moore machine control circuit for swapping the contents of registers R1 and R2 by using R3 as a temporary. [ Figure 6.10 from the textbook ]
69
If an output is not given, then assume that it is 0.
State Diagram D: R 3 out 1 = in Done , w C: 2 B: A: No Transfer Reset If an output is not given, then assume that it is 0. [ Figure 6.11 from the textbook ]
70
Animated Register Swap
71
Animated Register Swap
0xFF 0x42 0xC9 These are the original values of the 8-bit registers
72
Animated Register Swap
1 0xFF 0x42 0xC9 For clarity, only inputs that are equal to 1 will be shown.
73
Animated Register Swap
1 0xFF 1 0x42 1 0xC9
74
Animated Register Swap
1 0xFF 1 0x42 0x42 1 0xC9
75
Animated Register Swap
1 0xFF 1 0x42 1 0x42
76
Animated Register Swap
1 1 0xFF 1 0x42 0x42
77
Animated Register Swap
1 1 0xFF 1 0x42 0xFF 0x42
78
Animated Register Swap
1 1 0xFF 1 0xFF 0x42
79
Animated Register Swap
1 1 0xFF 0xFF 1 0x42
80
Animated Register Swap
1 1 0xFF 0xFF 0x42 1 0x42
81
Animated Register Swap
1 1 0x42 0xFF 1 0x42
82
Animated Register Swap
0x42 0xFF 1 0x42
83
If an output is not given, then assume that it is 0.
State Diagram D: R 3 out 1 = in Done , w C: 2 B: A: No Transfer Reset If an output is not given, then assume that it is 0. [ Figure 6.11 from the textbook ]
84
Some Questions How many flip-flops are we going to use?
How many logic expressions do we need to find?
85
, D: R 3 1 = Done w C: 2 B: A: No Transfer Reset W Z Next State Logic
out 1 = in Done , w C: 2 B: A: No Transfer Reset W Z Next State Logic Q(t+1) Flip-Flop Array Q(t) Output Logic Clock
86
, D: R 3 1 = Done w C: 2 B: A: No Transfer Reset R1out w
in Done , w C: 2 B: A: No Transfer Reset R1out w Next State Logic Y[1:2] Flip-Flop Array y[1:2] Output Logic R1in R2out R2in R3out Clock R3in Done
87
Present Next state Outputs state A B C D w = 0 w = 1 , D: R 3 1 = Done
in Done , w C: 2 B: A: No Transfer Reset Present Next state Outputs state A B C D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done
88
Present Next state Outputs state A B C 1 D w = 0 w = 1 , D: R 3 1 =
in Done , w C: 2 B: A: No Transfer Reset Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done
89
We will consider three encoding schemes.
As we saw before, we can expect that some state encodings will be better than others. We will consider three encoding schemes.
90
Encoding #1: A=00, B=01, C=10, D=11 (Uses Two Flip-Flops)
91
State Table State-Assigned Table Present Next state Outputs state A B
C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 10 C 11 D Y2Y1 y2y1 [ Figure 6.12 & 6.13 from the textbook ]
92
State Table State Assigned Table Present Next state Outputs state A B
C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State Assigned Table R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 10 C 11 D Y2Y1 y2y1 [ Figure 6.12 & 6.13 from the textbook ]
93
State Table State Assigned Table Present Next state Outputs state A B
C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State Assigned Table R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 10 C 11 D Y2Y1 y2y1 [ Figure 6.12 & 6.13 from the textbook ]
94
State Table State Assigned Table Present Next state Outputs state A B
C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State Assigned Table R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 10 C 11 D Y2Y1 y2y1 [ Figure 6.12 & 6.13 from the textbook ]
95
Let's derive the next-state expressions
Present Next state state Outputs A 00 1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done y2 y1 w Y2 Y1 1 Let's derive the next-state expressions
96
Present Next state state Outputs A 00 1 B 01 10 C 11 D w = 0 w = 1
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done y2 y1 w Y2 Y1 1
97
Present Next state state Outputs A 00 1 B 01 10 C 11 D w 00 01 11 10 1
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done w 00 01 11 10 1 y 2 Y y2 y1 w Y2 Y1 1 w 00 01 11 10 1 y 2 Y
98
0 0 0 1 1 0 0 1 0 1 0 1 Present Next state state Outputs A 00 1 B 01
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done w 00 01 11 10 1 y 2 Y y2 y1 w Y2 Y1 1 w 00 01 11 10 1 y 2 Y
99
0 0 0 1 1 0 0 1 0 1 0 1 Present Next state state Outputs A 00 1 B 01
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done w 00 01 11 10 1 y 2 Y y2 y1 w Y2 Y1 1 w 00 01 11 10 1 y 2 Y
100
0 0 0 1 1 0 0 1 0 1 0 1 Present Next state state Outputs A 00 1 B 01
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done w 00 01 11 10 1 y 2 Y y2 y1 w Y2 Y1 1 w 00 01 11 10 1 y 2 Y
101
Let's derive the output expressions
Present Next state state Outputs A 00 1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done y2 y1 R1out R1in R2out 1 Let's derive the output expressions
102
Let's derive the output expressions
Present Next state state Outputs A 00 1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done y2 y1 R1out R1in R2out 1 Let's derive the output expressions We need to derive only these 3 unique ones
103
Present Next state state Outputs A 00 1 B 01 10 C 11 D w = 0 w = 1
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done y2 y1 R1out R1in R2out 1
104
Present Next state state Outputs A 00 1 B 01 10 C 11 D
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done y2 y1 R1out R1in R2out 1 R1out = R2in = y1 y2 R1in = R3out = Done = y1 y2 R2out = R3in = y1 y2
105
Present Next state state Outputs A 00 1 B 01 10 C 11 D w = 0 w = 1
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done
106
y1 y2 y1 y2 y1 y2 Present Next state state Outputs A 00 1 B 01 10 C 11
1 B 01 10 C 11 D w = 0 w = 1 y2y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done
107
Encoding #2: A=00, B=01, C=11, D=10 (Also Uses Two Flip-Flops)
108
State Table (same as before)
Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 [ Figure 6.12 & 6.18 from the textbook ]
109
State Table (same as before)
Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 [ Figure 6.12 & 6.18 from the textbook ]
110
State Table (same as before)
Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 [ Figure 6.12 & 6.18 from the textbook ]
111
State Table (same as before)
Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 [ Figure 6.12 & 6.18 from the textbook ]
112
Let's derive the next-state expressions
R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 y2 y1 w Y2 Y1 1 Let's derive the next-state expressions
113
Present Next state state Outputs A 00 1 B 01 11 C 10 D R1out R1in
Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 y2 y1 w Y2 Y1 1
114
Present Next state state Outputs A 00 1 B 01 11 C 10 D w 00 01 11 10 1
R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 w 00 01 11 10 1 y 2 Y y2 y1 w Y2 Y1 1 w 00 01 11 10 1 y 2 Y
115
0 1 0 0 1 1 0 0 0 1 1 0 Present Next state state Outputs A 00 1 B 01
R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 w 00 01 11 10 1 y 2 Y y2 y1 w Y2 Y1 1 w 00 01 11 10 1 y 2 Y
116
0 1 0 0 1 1 0 0 0 1 1 0 Present Next state state Outputs A 00 1 B 01
R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 w 00 01 11 10 1 y 2 Y y2 y1 w Y2 Y1 1 w 00 01 11 10 1 y 2 Y
117
0 1 0 0 1 1 0 0 0 1 1 0 Present Next state state Outputs A 00 1 B 01
R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 w 00 01 11 10 1 y 2 Y y2 y1 w Y2 Y1 1 Y 1 wy 2 y + = w 00 01 11 10 1 y 2 Y Y 2 y 1 =
118
Let's derive the output expressions
R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 y2 y1 R1out R1in R2out 1 Let's derive the output expressions
119
Let's derive the output expressions Once again, we only need to derive
R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 y2 y1 R1out R1in R2out 1 Let's derive the output expressions Once again, we only need to derive these three unique ones.
120
Present Next state state Outputs A 00 1 B 01 11 C 10 D A B D C R1out
R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 y2 y1 R1out R1in R2out 1 A B D C Note that C and D are swapped in the truth table due to the new state encoding that was chosen.
121
Present Next state state Outputs A 00 1 B 01 11 C 10 D A B D C R1out
R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 y2 y1 R1out R1in R2out 1 A B D C
122
Present Next state state Outputs A 00 1 B 01 11 C 10 D A
R1out R1in R2out R2in R3out R3in Done w = 0 w = 1 Present Next state state Outputs A 00 1 B 01 11 C 10 D Y2Y1 y2y1 y2 y1 R1out R1in R2out 1 A R1out = R2in = y1 y2 B R1in = R3out = Done = y1 y2 D R2out = R3in = y1 y2 C
123
Let's Complete the Circuit Diagram
Y y 2 2 D Q Q Y y 1 1 w D Q Clock Q R1out = R2in = y1 y2 Y 1 wy 2 y + = R1in = R3out = Done = y1 y2 Y 2 y 1 = R2out = R3in = y1 y2
124
Encoding #3: A=0001, B=0010, C=0100, D=1000 (One-Hot Encoding – Uses Four Flip-Flops)
125
One-Hot State Encoding
So far, we have been encoding states in a way that minimizes the number of flip-flops. But sometimes we can decrease the complexity of our logic if we encode states more sparsely.
126
Encoding for State A D Q Y 2 1 w Clock y 3 4 1
127
Encoding for State B D Q Y 2 1 w Clock y 3 4 1
128
Encoding for State C D Q Y 2 1 w Clock y 3 4 1
129
Encoding for State D D Q Y 2 1 w Clock y 3 4 1
130
Register Swap Controller
Present Next state Outputs state w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done A A B B C C 1 1 C D D 1 1 D A A 1 1 1
131
Register Swap Controller
Present Next state Outputs state w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done A A B B C C 1 1 C D D 1 1 D A A 1 1 1 Let’s use four flip-flops and the following one-hot state encoding scheme: A = 0001 B = 0010 C = 0100 D = 1000
132
State Table (same as before)
Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1 [ Figure 6.12 & 6.21 from the textbook ]
133
State Table (same as before)
Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1 [ Figure 6.12 & 6.21 from the textbook ]
134
State Table (same as before)
Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1 [ Figure 6.12 & 6.21 from the textbook ]
135
State Table (same as before)
Present Next state Outputs state A B C 1 D w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done State-Assigned Table Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1 [ Figure 6.12 & 6.21 from the textbook ]
136
Let's Derive the Next-State Expressions
Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1
137
Let's Derive the Next-State Expressions
Y1(w, y4, y3, y2, y1) Y2(w, y4, y3, y2, y1) Y3(w, y4, y3, y2, y1) Y4(w, y4, y3, y2, y1) We need to do four 5-variable K-maps! Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1
138
Let's Derive the Next-State Expressions
Y1(w, y4, y3, y2, y1) = wy1 + y4 Y2(w, y4, y3, y2, y1) = wy1 Y3(w, y4, y3, y2, y1) = y2 Y4(w, y4, y3, y2, y1) = y3 Or we can be smarter than that Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1
139
Let's Derive the Output Expressions
Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1
140
Let's Derive the Output Expressions
R1out(y4, y3, y2, y1) R1in (y4, y3, y2, y1) R2out(y4, y3, y2, y1) R2in (y4, y3, y2, y1) R3out(y4, y3, y2, y1) R3in (y4, y3, y2, y1) Done(y4, y3, y2, y1) We need to do seven 4-variable K-maps! Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1
141
Let's Derive the Output Expressions
R1out(y4, y3, y2, y1) = y3 R1in (y4, y3, y2, y1) = y4 R2out(y4, y3, y2, y1) = y2 R2in (y4, y3, y2, y1) = y3 R3out(y4, y3, y2, y1) = y4 R3in (y4, y3, y2, y1) = y2 Done(y4, y3, y2, y1) = y4 Or we can be smarter than that by exploiting the one-hot property Present Next State State Outputs A 001 0001 0010 B 010 0100 1 C 100 1000 D 000 w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done y4y3y2y1 Y4Y3Y2Y1
142
Let's Complete the Circuit Diagram
R1out = R2in = y3 R2out = R3in = y2 R1in = R3out = Done = y4 D Q Y 2 1 w Clock y 3 4 Y1 = w y1 + y4 Y2 = w y1 Y3 = y2 Y4 = y3
143
Questions?
144
THE END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.