Presentation is loading. Please wait.

Presentation is loading. Please wait.

Non-platinum amorphous Fe60Co20Si10B10 cathode catalyst combined with anion selective binder for alkaline water electrolysis M. Ďurovič, J. Hnát, C. I.

Similar presentations


Presentation on theme: "Non-platinum amorphous Fe60Co20Si10B10 cathode catalyst combined with anion selective binder for alkaline water electrolysis M. Ďurovič, J. Hnát, C. I."— Presentation transcript:

1 Non-platinum amorphous Fe60Co20Si10B10 cathode catalyst combined with anion selective binder for alkaline water electrolysis M. Ďurovič, J. Hnát, C. I. Müller, T. Rauscher, L. Röntzsch, M. Paidar, K. Bouzek Dep. of Inorganic Technology, University of Chemistry and Technology, Prague Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Dresden Institute of Materials Science, Technische Universitat, Dresden

2 Introduction – Alkaline water electrolysis
25 – 30 wt.% KOH 70 – 80 °C Cathode: Steel 4 H2O + 4 e- = 2 H2 + 4 OH- Anode: Nickel 4 OH- = O2 + 2 H2O + 4 e- Overall reaction 2 H2O = 2 H2 + O2 Separator Asbestos, ceramics, composite materials Long-term stability, non-platinum catalysts Low efficiency, aggressive environment, limited flexibility Scheme of industrial alkaline water electrolysis Zeng, K.; Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science 2010, 36 (3), 2

3 Introduction – Alkaline membrane water electrolysis
Alkaline zero gap arrangement Diaphragm Nonporous anion selective membrane Selectively transports OH- Porous electrodes Ni mesh, tungsten Catalysts Anode: Spinel oxides, perovskites Cathode: Ni/Fe-based alloys Anion selective binder Keeps catalyst particles on the surface of the electrode Ensures the mechanical stability of the layer Ensures the ionic conductivity in the catalytic layer Higher efficiency and better flexibility Stability of anion selective membranes, suitable catalytically active porous electrodes Alkaline zero gap arrangement Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy. 2013;38: 3

4 Aim of the work Porous cathode modified by a catalytic layer
Cathode catalyst Amorphous Fe60Co20Si10B10 alloy Anion selective polymer binder poly(styrene-ethylene-butylene-styrene) (PSEBS) copolymer with 1,4-diazabicyclo[2.2.2]octane (DABCO) functional groups Performance of the cathode catalytic layer with respect to: Catalyst: Binder weight ratio (20:80, 50:50, 70:30, 80:20, 90:10) Surface activation of the catalyst (Cyclic polarisation, leaching in KOH) Long-term stability test (200 h, AWE conditions) Anion selective polymer binder PSEBS-DABCO Hnat, J., et al., Anion-selective materials with 1,4-diazabicyclo octane functional groups for advanced alkaline water electrolysis. Electrochimica Acta, : p 4

5 Experimental part – Fe60Co20Si10B10 alloy
Material Fe, Co, Si, B Fraunhofer Inst Mfg Technol & Adv Mat IFAM, Dresden, Germany Production route Gas atomization process  Ball milling (8 hours)  Amorphous powder Properties Good malleability Simple preparation Cheaper than Pt metals Sufficient catalytic activity for hydrogen evolution reaction (HER) Its catalytic activity is possible to increase by a suitable surface activation 5

6 Experimental part – Electrodes preparation
Cathode Catalytic mixture: Fe60Co20Si10B10 catalyst + PSEBS-DABCO polymer binder Support: Ni foam Sedimentation of the catalyst on the Ni foam surface  Spraying of the binder on top of the catalyst Anode Catalytic mixture: NiCo2O4 + PSEBS-DABCO polymer binder Spraying of the catalytic mixture on the Ni foam surface 6

7 Experimental part – Cathode catalyst activation
Cyclic polarisation Ag/AgCl, KCl (sat.) ref. electrode Ni counter electrode Potential range: V to 0.2 V (vs. ref) Scan rate: 100 mV s-1 Number of cycles: 20, 100 and 1000 1 mol dm-3 KOH solution, 25 °C Leaching in KOH 1 mol dm-3 KOH, 25 °C 1, 4, 7 and 30 days 7

8 Experimental part - Methods
Scanning electrone microscopy Morphology of prepared cathodes Hitachi S4700 Accelerating voltage: 15 kV Secondary electron detection X-ray fluorescence Elemental composition of as prepared and activated cathodes Axios spectrometer (PANanalytical, Holland) ICP-OES Concentration of the individual elements of the catalyst released into the KOH solution after the surface activation PerkinElmer® Optima™ 8000 spectrometer 8

9 Experimental part – Methods
Alkaline water electrolysis 10 wt.% KOH solution Flow rate: 5 ml min-1 Polymer electrolyte: copolymer PSEBS with trimethylamonium (TMA) functional groups 2-electrodes arrangement Electrochemical impedance spectroscopy Frequency range: 40 kHz – 1 Hz Max. amplitude: 30 mV Cell voltage: V Equivalent electrical circuit. L1 – Inductance of the wires; Rcell – Ohmic resistance of the cell resistance; Rc/Ra – Polarization resistance of cathode/anode; CPE1/CPE2 – Electrochemical double-layer capacitance of cathode/anode 9

10 R & D – Catalytic layer composition
10 wt.% KOH, 5 ml min-1, 50 °C 1.5 – 2 V, potential step: 0.05 V Ni cathode: 20 mg Fe60Co20Si10B10 cm-2 PSEBS-DABCO binder Ni anode: 5 mg NiCo2O4 cm-2 0.56 mg PSEBS-DABCO cm-2 Separator: PSEBS-TMA polymer membrane 10

11 R & D – Catalytic layer composition
B C D F E Catalyst: Binder weight ratio (20 mg cm-2) A – Pure Ni foam B – 20:80 C – 50:50 D – 70:30 E – 80:20 F – 90:10 High amount of binder (B,C) Worse electron contact between the catalyst particles and Ni support Insuficient amount of binder (E,F) Worse three-phase contact for the catalyst particles Formation of the relatively large agglomerates (white circle) of the catalyst particles Optimal composition – 70:30 11

12 R & D – Cathode catalyst activation
XRF analysis SEM analysis ICP-OES A – Fresh particle B – Leaching in KOH C – Cyclic polarisation Element (wt. %) Fresh electrode Cyclic polarisation Leaching in KOH Fe 38.806 32.169 37.904 Co 13.251 12.352 14.944 Si 0.764 0.466 0.456 B - Element (mg l−1) Fe Co Si B Cyclic polarisation n/A 0.116 0.044 Leaching in KOH 0.135 0.15 A B C 12

13 R & D – Activation by cyclic polarisation
10 wt.% KOH, 5 ml min-1, 50 °C 1.5 – 2 V, potential step: 0.05 V Ni cathode: 15 mg Fe60Co20Si10B10 cm-2 6.5 mg PSEBS-DABCO binder Ni anode: 5 mg NiCo2O4 cm-2 0.56 mg PSEBS-DABCO cm-2 Separator: PSEBS-TMA polymer membrane 13

14 R & D – Activation by leaching in KOH
10 wt.% KOH, 5 ml min-1, 50 °C 1.5 – 2 V, potential step: 0.05 V Ni cathode: 15 mg Fe60Co20Si10B10 cm-2 6.5 mg PSEBS-DABCO binder Ni anode: 5 mg NiCo2O4 cm-2 0.56 mg PSEBS-DABCO cm-2 Separator: PSEBS-TMA polymer membrane 14

15 R & D – Activation conclusion
10 wt.% KOH, 5 ml min-1, 50 °C 1.5 – 2 V, potential step: 0.05 V Ni cathode: 15 mg Fe60Co20Si10B10 cm-2 6.5 mg PSEBS-DABCO binder Ni anode: 5 mg NiCo2O4 cm-2 0.56 mg PSEBS-DABCO cm-2 Separator: PSEBS-TMA polymer membrane 15

16 R & D – Long-term stability test
C B A A – Continuous activation of the catalyst and conditioning of the polymer electrolyte B – Sorption of atmospheric CO2 / membrane degradation C – Stabilization of the cell voltage Addition of water 16

17 R & D – Long-term stability test
Rcell = Rmem + RKOH Membrane degradation Fresh membrane (1.22 mmol g-1) After the stability test (1.1 mmol g-1) Sorption of CO2 Decrease in membrane conductivity Decrease in KOH conductivity RC – Cathode polarization resistance Constant values during the test Values of cell ohmic resistance RCell and cathode polarization resistance Rc during the stability test. Experimental conditions: Voltage – 1,8 V; separator – PSEBS-CM-TMA; anode – 5  mg NiCo2O4 cm−2 + 0.56 mg PSEBS-CM-DABCO polymer binder (4 cm2); cathode – 15 mg Fe60Co20Si10B10 cm−2 + 6,5 mg PSEBS-CM-DABCO cm−2 (3.8 cm2); electrolyte – 10wt.% KOH solution; flow rate – 5 ml min−1; temperature – 50 °C. 17

18 Conclusion The combination of an Fe60Co20Si10B10 alloy and a PSEBS-DABCO binder represents a promising and cost-effective cathode catalyst system for alkaline water electrolysis Optimal Catalyst: Binder weight ratio – 70:30 Both activations increased the activity of the catalyst by almost 50 % Leaching in a KOH solution seems to be the optimal method considering the possible industrial application (simple, cost-effective procedure) Catalyst remained stable and active during the long-term stability test 18

19 THANK YOU FOR YOUR ATTENTION


Download ppt "Non-platinum amorphous Fe60Co20Si10B10 cathode catalyst combined with anion selective binder for alkaline water electrolysis M. Ďurovič, J. Hnát, C. I."

Similar presentations


Ads by Google