Download presentation
Presentation is loading. Please wait.
Published byLeslie Reed Modified over 6 years ago
1
CO Activation and C-C Bond Formation in Synthesis Gas Conversion
Brett Loveless and Enrique Iglesia BP Fall Review November 19, 2009 biomass hydrocarbons + oxygenates rr CO + H2 coal natural gas Co, 473 K, 2.0 MPa
2
The Nature of the CO* Activation Path in FTS Remains Controversial
Unassisted or Alternate Paths? Unassisted O C C O
3
The Nature of the CO* Activation Path in FTS Remains Controversial
Unassisted or Alternate Paths? Unassisted Carbene Mechanism O CH3 CH2 CH3 CH2 C C O Fischer, F., Tropsch, H., Brennst. Chem. 7 (1926) 97 Brady R. C., Pettit, R., J. Am. Chem. Soc. 103 (1981) 1287
4
The Nature of the CO* Activation Path in FTS Remains Controversial
Unassisted or Alternate Paths? Unassisted Carbene Mechanism O CH3 CH2 CH3 CH2 C C O Fischer, F., Tropsch, H., Brennst. Chem. 7 (1926) 97 Brady R. C., Pettit, R., J. Am. Chem. Soc. 103 (1981) 1287 H-assisted O O + H* H … H C C
5
The Nature of the CO* Activation Path in FTS Remains Controversial
Unassisted or Alternate Paths? Unassisted Carbene Mechanism O CH3 CH2 CH3 CH2 C C O Fischer, F., Tropsch, H., Brennst. Chem. 7 (1926) 97 Brady R. C., Pettit, R., J. Am. Chem. Soc. 103 (1981) 1287 H-assisted Hydroxymethylene Mechanism O H O H H OH H OH O + H* H H C C C C - H2O C C Ojeda, et al., Unpublished Results & Ongoing Analysis Storch et al., “The Fischer-Tropsch and Related Syntheses” (1951) Huo, et al., J. Phys. Chem. C 112 (2008) 14108
6
The Nature of the CO* Activation Path in FTS Remains Controversial
Unassisted or Alternate Paths? Unassisted Carbene Mechanism O CH3 CH2 CH3 CH2 C C O Effects of H2O? High Termination Probability (to CH4 ) at C1*? Fischer, F., Tropsch, H., Brennst. Chem. 7 (1926) 97 Brady R. C., Pettit, R., J. Am. Chem. Soc. 103 (1981) 1287 H-assisted Hydroxymethylene Mechanism O H O H H OH H OH O + H* H H C C C C - H2O C C Ojeda, et al., Unpublished Results & Ongoing Analysis Storch et al., “The Fischer-Tropsch and Related Syntheses” (1951) Huo, et al., J. Phys. Chem. C 112 (2008) 14108
7
H2O increases FTS Rates and C5+ Selectivities
No added H2O Added H2O CO C5+ CH4 (x5) Krishnamoorthy, et al., J. Catal. 211 (2002) 422
8
H2O increases FTS Rates and C5+ Selectivities
No added H2O Added H2O CO C5+ CH4 (x5) Krishnamoorthy, et al., J. Catal. 211 (2002) 422
9
Surface Hydrocarbon Chains have a Tendency
to Terminate as CH4 rr Co, 473 K, 2.0 MPa Adapted from Iglesia, et al., Adv. Catal. 39 (1993) 221.
10
Surface Hydrocarbon Chains have a Tendency
to Terminate as CH4 βH,1 ≈ 1.1 rr βH,2-30 ≈ 0.06 Co, 473 K, 2.0 MPa Adapted from Iglesia, et al., Adv. Catal. 39 (1993) 221.
11
Surface Hydrocarbon Chains have a Tendency
to Terminate as CH4 βH,1 ≈ 1.1 rr βH,2-30 ≈ 0.06 Co, 473 K, 2.0 MPa Adapted from Iglesia, et al., Adv. Catal. 39 (1993) 221.
12
Surface Hydrocarbon Chains have a Tendency
to Terminate as CH4 βH,1 ≈ 1.1 rr βH,2-30 ≈ 0.06 Co, 473 K, 2.0 MPa C2H4 CnH2n CH4 C2H6 CnH2n+2 50% C1* C2* … Cn* 50% Adapted from Iglesia, et al., Adv. Catal. 39 (1993) 221.
13
Isotopic Tracer Studies Aim to Probe CO Activation and C-C Bond Formation Paths
H2/CO micropump ≤ 20 atm Catalyst GC/MS 463 – 523 K GC Sampling port Trap H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 CHx O13CHx C1* C2* … Cn*
14
Investigating CO* Activation Paths in FTS
H2O Effects in FTS Alternate CO Activation Paths Intermediates in FTS Monomer Formation
15
H-Assisted CO Activation Paths in FTS H*-assisted CO* activation
1. CO + * CO* H*-assisted CO* activation 2. H2 + 2* H* 6. CO* + H* HCO* + * 7. HCO* + H* HCOH* + * 8. HCOH* + * CH* + OH* 9. OH* + H* H2O + 2* 10. CH* + H* CH2* + * Co/MgO/SiO2 catalyst Yates and Satterfield, Energy Fuels 5 (1991) 168
16
H-Assisted CO Activation Paths in FTS
1. CO + * CO* H*-assisted CO* activation Unassisted CO* activation 2. H2 + 2* H* 6. CO* + H* HCO* + * 3. CO* + * C* + O* 7. HCO* + H* HCOH* + * 4. C* + H* CH* + * 8. HCOH* + * CH* + OH* 5. CO* + O* CO2 + 2* 9. OH* + H* H2O + 2* 10. CH* + H* CH2* + * Ojeda, et al., Unpublished Results & Ongoing Analysis Fe-Zn-Cu-K Catalyst rH2O rCO2
17
H-Assisted CO Activation Paths in FTS
Co/MgO/SiO2 catalyst Yates and Satterfield, Energy Fuels 5 (1991) 168 Fe-Zn-Cu-K Catalyst Ojeda, et al., Unpublished Results & Ongoing Analysis
18
H-Assisted CO Activation Paths in FTS
Co/MgO/SiO2 catalyst Yates and Satterfield, Energy Fuels 5 (1991) 168 Fe-Zn-Cu-K Catalyst Ojeda, et al., Unpublished Results & Ongoing Analysis
19
Predominant Oxygen Removal Path through Water on Cobalt-based FT Catalysts
Co/MgO/SiO2 catalyst CO2 H2O O O O O O O O Yates and Satterfield, Energy Fuels 5 (1991) 168 C C C C H OH C C O C Fe, Co Fe Fe-Zn-Cu-K Catalyst Ojeda, et al., Unpublished Results & Ongoing Analysis
20
Investigating CO* Activation Paths in FTS
H2O Effects in FTS Alternate CO Activation Paths Intermediates in FTS Monomer Formation
21
Investigating CO* Activation Paths in FTS
H2O Effects in FTS Alternate CO Activation Paths H-assisted Intermediates in FTS Monomer Formation CO* + H* HCO* + * HCO* + H* HCOH* + * HCOH* + * CH* + OH* OH* + H* H2O + 2*
22
H2O Increases Molecular Weight and Olefin/Paraffin Ratios
Added H2O 0.06 MPa 0 MPa CH4 0 MPa 0.06 MPa 473 K, 1.6 MPa, H2/CO=2.02, 30 wt% Co/SiO2
23
H2O Increases Molecular Weight and Olefin/Paraffin Ratios
Added H2O 0.06 MPa 0 MPa Added H2O C3 0.06 MPa 0 MPa CH4 C5 0 MPa 0.06 MPa 473 K, 1.6 MPa, H2/CO=2.02, 30 wt% Co/SiO2
24
H2O* May Activate CO* without an Increase in Chain Termination
Added H2O 0.06 MPa 0 MPa Added H2O C3 0.06 MPa 0 MPa CH4 C5 0 MPa 0.06 MPa 473 K, 1.6 MPa, H2/CO=2.02, 30 wt% Co/SiO2 H2O-assisted O C H CnH2n+2 H H x COH OH CnH2n+1
25
H2O* May Activate CO* without an Increase in Chain Termination
Added H2O 0.06 MPa 0 MPa Added H2O C3 0.06 MPa 0 MPa CH4 C5 0 MPa 0.06 MPa 473 K, 1.6 MPa, H2/CO=2.02, 30 wt% Co/SiO2 H-assisted H C O CnH2n+2 COH H CnH2n+1
26
H2O* May Activate CO* without an Increase in Chain Termination
Added H2O 0.06 MPa 0 MPa Added H2O C3 0.06 MPa 0 MPa CH4 C5 0 MPa 0.06 MPa 473 K, 1.6 MPa, H2/CO=2.02, 30 wt% Co/SiO2 C1 C2 Cn kt1[C1*] ktn[C2*] ktn[Cn*] C* C1* C2* … Cn* ki[C*] kg[C1*][C*] kg[C2*][C*] kg[Cn-1*][C*] Bertole, et al., J. Catal. 210 (2002) 84
27
H2O* May Activate CO* without an Increase in Chain Termination
Added H2O 0.06 MPa 0 MPa Added H2O C3 0.06 MPa 0 MPa CH4 C5 0 MPa 0.06 MPa 473 K, 1.6 MPa, H2/CO=2.02, 30 wt% Co/SiO2 C1 C2 Cn kt1[C1*] ktn[C2*] ktn[Cn*] C* C1* C2* … Cn* ki[C*] kg[C1*][C*] kg[C2*][C*] kg[Cn-1*][C*] Bertole, et al., J. Catal. 210 (2002) 84
28
H2O* May Activate CO* without an Increase in Chain Termination
Added H2O 0.06 MPa 0 MPa Added H2O C3 0.06 MPa 0 MPa CH4 C5 0 MPa 0.06 MPa 473 K, 1.6 MPa, H2/CO=2.02, 30 wt% Co/SiO2 C1 C2 Cn CO* + H* kt1[C1*] ktn[C2*] ktn[Cn*] HCO* C1* C1* C2* … Cn* CO* + HOH* kg[C1*][C*] kg[C2*][C*] kg[Cn-1*][C*] ki[HCO*] Bertole, et al., J. Catal. 210 (2002) 84
29
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – DFT and Reactive Encounters of Surface Minority Species k[CO*][H*] CO* + H* HCO* CO* + HOH* k[CO*][HOH*] CO* + HOH* HCO* + OH*
30
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – DFT and Reactive Encounters of Surface Minority Species k[CO*][H*] CO* + H* HCO* CO* + HOH* k[CO*][HOH*] CO* + HOH* HCO* + OH* In-house software for model generation Computing time on Chinook Cluster Weeklong visit with Prof. Matt Neurock (UVa)
31
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO H2 CO H CO CO CO Absorbance Wavenumber
32
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO H2 CO H CO CO CO Absorbance Wavenumber
33
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO 13CO H2 H2 CO H CO CO CO CO H CO CO CO time Absorbance Absorbance Wavenumber Wavenumber
34
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO 13CO 13CO H2 H2 H2 CO H CO CO CO CO H CO CO CO CO H CO CO CO time Absorbance Absorbance Absorbance Wavenumber Wavenumber Wavenumber
35
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO 13CO 13CO 13CO H2 H2 H2 H2 CO H CO CO CO CO H CO CO CO CO H CO CO CO CO H CO CO CO time Absorbance Absorbance Absorbance Absorbance Wavenumber Wavenumber Wavenumber Wavenumber
36
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO 13CO 13CO 13CO H2 H2 H2 H2 CO H CO CO CO CO H CO CO CO CO H CO CO CO CO H CO CO CO time Absorbance Absorbance Absorbance Absorbance Wavenumber Wavenumber Wavenumber Wavenumber
37
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO 13CO 13CO 13CO H2 H2 H2 H2 CO H CO CO CO CO H CO CO CO CO H CO CO CO CO H CO CO CO Pt/Al2O3 Absorbance Absorbance Absorbance Absorbance Wavenumber Wavenumber Wavenumber Wavenumber Allian, Iglesia, et al., Unpublished Results and Ongoing Analysis
38
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO 13CO 13CO 13CO H2 H2 H2 H2 CO H CO CO CO CO H CO CO CO CO H CO CO CO CO H CO CO CO Pt/Al2O3 Absorbance Absorbance Absorbance Absorbance Wavenumber Wavenumber Wavenumber Wavenumber Allian, Iglesia, et al., Unpublished Results and Ongoing Analysis
39
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Transient In-Situ IR Studies 12CO 13CO 13CO 13CO H2 H2 H2 H2 CO H CO CO CO CO H CO CO CO CO H CO CO CO CO H CO CO CO Pt/Al2O3 Absorbance Absorbance Absorbance Absorbance Wavenumber Wavenumber Wavenumber Wavenumber Allian, Iglesia, et al., Unpublished Results and Ongoing Analysis
40
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Labeled Olefin and Water Co-Feed Studies k[CO*][H*] CO* + H* HCO* CO* + HOH* k[CO*][HOH*] CO* + HOH* HCO* + OH* H2 13CO C2H4 C3H6 CnH2n CH4 CnH2n+2 C2H6 C3H8 CHx HxCO C1* C2* C3* … Cn*
41
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Labeled Olefin and Water Co-Feed Studies k[CO*][H*] CO* + H* HCO* CO* + HOH* k[CO*][HOH*] CO* + HOH* HCO* + OH* H2 13CO C2H4 C3H6 CnH2n CH4 CnH2n+2 C2H6 C3H8 CHx HxCO C1* C2* C3* … Cn* 12C2H4
42
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Labeled Olefin and Water Co-Feed Studies k[CO*][H*] CO* + H* HCO* CO* + HOH* k[CO*][HOH*] CO* + HOH* HCO* + OH* measure 12C content H2 13CO C2H4 C3H6 CnH2n CH4 CnH2n+2 C2H6 C3H8 CHx HxCO C1* C2* C3* … Cn* 12C2H4
43
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Labeled Olefin and Water Co-Feed Studies k[CO*][H*] CO* + H* HCO* CO* + HOH* k[CO*][HOH*] CO* + HOH* HCO* + OH* measure 12C content…increased? H2 13CO H2O C2H4 C3H6 CnH2n CH4 CnH2n+2 C2H6 C3H8 CHx HxCO C1* C2* C3* … Cn* 12C2H4
44
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Labeled Olefin and Water Co-Feed Studies k[CO*][H*] CO* + H* HCO* CO* + HOH* k[CO*][HOH*] CO* + HOH* HCO* + OH* H2 13CO C2H4 C3H6 CnH2n CH4 CnH2n+2 C2H6 C3H8 CHx HxCO C1* C2* C3* … Cn* 12C2H4
45
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Labeled Olefin and Water Co-Feed Studies βH,1 ≈ 1.1 k[CO*][H*] CO* + H* βH,2-30 ≈ 0.06 HCO* CO* + HOH* k[CO*][HOH*] CO* + HOH* HCO* + OH* measure 12C content H2 13CO C2H4 C3H6 CnH2n CH4 CnH2n+2 C2H6 C3H8 CHx HxCO C1* C2* C3* … Cn* 12CH4 12C2H4
46
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Labeled Olefin and Water Co-Feed Studies βH,1 ≈ 1.1 k[CO*][H*] k[CO*][H*] CO* + H* CO* + H* βH,2-30 ≈ 0.06 HCO* HCO* CO* + HOH* CO* + HOH* k[CO*][HOH*] k[CO*][HOH*] CO* + HOH* HCO* + OH* measure 12C content H2 13CO C2H4 C3H6 CnH2n CH4 CnH2n+2 C2H6 C3H8 CHx HxCO C1* C2* C3* … Cn* 12C3H6
47
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Labeled Olefin and Water Co-Feed Studies βH,1 ≈ 1.1 k[CO*][H*] k[CO*][H*] k[CO*][H*] CO* + H* CO* + H* CO* + H* βH,2-30 ≈ 0.06 HCO* HCO* HCO* CO* + HOH* CO* + HOH* CO* + HOH* k[CO*][HOH*] k[CO*][HOH*] k[CO*][HOH*] CO* + HOH* HCO* + OH* H2 13CO C2H4 C3H6 CnH2n Difficulty forming the first C-C bond? CH4 CnH2n+2 C2H6 C3H8 CHx HxCO C1* C2* C3* … Cn* 12C3H6
48
Investigating CO* Activation Paths in FTS
H2O Effects in FTS Alternate CO Activation Paths H-assisted Intermediates in FTS Monomer Formation CO* + H* HCO* + * HCO* + H* HCOH* + * HCOH* + * CH* + OH* OH* + H* H2O + 2*
49
Investigating CO* Activation Paths in FTS HCO*
Alternate CO Activation Paths H2O-assisted CO* + H* HCO* CO* + HOH* Alternate CO Activation Paths H-assisted Intermediates in FTS Monomer Formation CO* + H* HCO* + * HCO* + H* HCOH* + * HCOH* + * CH* + OH* OH* + H* H2O + 2*
50
Investigating CO* Activation Paths in FTS HCO*
Alternate CO Activation Paths H2O-assisted H O H CO* + H* C H HCO* CO* + HOH* H Alternate CO Activation Paths H-assisted Intermediates in FTS Monomer Formation CO* + H* HCO* + * HCO* + H* HCOH* + * HCOH* + * CH* + OH* OH* + H* H2O + 2*
51
Using Labeled Probes to Investigate CO Activation in FTS
H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 CHx O13CHx C1* C2* … Cn* RRU, 503 K, 1.0 MPa, 30 wt% Co/SiO2, H2/12CO = 1, 12CO/13CH3OH = 5
52
Using Labeled Probes to Investigate CO Activation in FTS
H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 CHx O13CHx C1* C2* … Cn* RRU, 503 K, 1.0 MPa, 30 wt% Co/SiO2, H2/12CO = 1, 12CO/13CH3OH = 5
53
Using Labeled Probes to Investigate CO Activation in FTS
H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 - H -C-C + CHx O13CHx -C-C-C- - H + C1* C2* (29) … Cn* (44) H - H -C + - (15) H RRU, 503 K, 1.0 MPa, 30 wt% Co/SiO2, H2/12CO = 1, 12CO/13CH3OH = 5
54
Using Labeled Probes to Investigate CO Activation in FTS
H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 CHx O13CHx C1* C2* … Cn* %13C = 4.6 RRU, 503 K, 1.0 MPa, 30 wt% Co/SiO2, H2/12CO = 1, 12CO/13CH3OH = 5
55
Using Labeled Probes to Investigate CO Activation in FTS
H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 CHx O13CHx C1* C2* … Cn* %13C = 4.6 RRU, 503 K, 1.0 MPa, 30 wt% Co/SiO2, H2/12CO = 1, 12CO/13CH3OH = 5
56
Using Labeled Probes to Investigate CO Activation in FTS
H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 CHx O13CHx C1* C2* … Cn* %13C = 4.6 13C distribution 0.332 0.335 0.333 RRU, 503 K, 1.0 MPa, 30 wt% Co/SiO2, H2/12CO = 1, 12CO/13CH3OH = 5
57
Using Labeled Probes to Investigate CO Activation in FTS
H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 CHx O13CHx C1* C2* … Cn* reactants %13C = 4.6 … C3H8 RRU, 503 K, 1.0 MPa, 30 wt% Co/SiO2, H2/12CO = 1, 12CO/13CH3OH = 5
58
Using Labeled Probes to Investigate CO Activation in FTS
H2 12CO 13CH3OH C2H4 CnH2n CH4 C2H6 CnH2n+2 CHx O13CHx CO CH3OH H2 OCHx … C1* C2* … Cn* reactants %13C = 4.6 %13C = 4.6 … C3H8 RRU, 503 K, 1.0 MPa, 30 wt% Co/SiO2, H2/12CO = 1, 12CO/13CH3OH = 5
59
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Isotopic Probes for Identifying Oxygenated Intermediates in the FTS Reactions with C1 Oxygenates 12CO, H2, 13CH3OH O H . . . C + H H2/CO Catalyst GC/MS micropump Sampling port Hot Trap GC
60
Extending FT Chemistry to Alcohol Synthesis
Ongoing Work – Isotopic Probes for Identifying Oxygenated Intermediates in the FTS Reactions with C1 Oxygenates 12CO, H2, 13CH3OH O H . . . C + H H2/CO Catalyst GC/MS micropump Sampling port Hot Trap H O H O H H O C C H H C O H H GC Increasing “Monomer” Quality
61
Investigating CO* Activation Paths in FTS HCO*
Alternate CO Activation Paths H2O-assisted CO* + H* HCO* CO* + HOH* Alternate CO Activation Paths H-assisted Intermediates in FTS Monomer Formation CO* + H* HCO* + * HCO* + H* HCOH* + * HCOH* + * CH* + OH* OH* + H* H2O + 2*
62
Investigating CO* Activation Paths in FTS HCO*
Alternate CO Activation Paths H2O-assisted CO* + H* HCO* CO* + HOH* Alternate CO Activation Paths H-assisted CH3OH incorporates into chain growth paths slowly CO* + H* HCO* + * CO CH3OH H2 OCHx … HCO* + H* HCOH* + * HCOH* + * CH* + OH* OH* + H* H2O + 2*
63
Wrap Up and Ongoing Work
Effects of H2O on FTS H2O-assisted CO Activation Paths DFT and Olefin co-feed Studies Correct Kinetics w/ H2O H2 13CO H2O 12C2H4 CHx HxCO Alternate CO Activation Paths H-(H2O-)assisted C1 Oxygenate co-feed studies In-situ IR (CO adsorption) C-C Bond Formation Paths Olefin co-feed Studies Relative Rates of Termination and Propagation H O H O H C2H4 H O CH4 H2 13CO C2H6 C C H H C O H H C1* C2* Increasing “Monomer” Quality 12C2H4
64
Current/Future Work and Acknowledgements
Acknowledgments Professor Matt Neurock Professor Carlo Visconti, Dr. Dante Simonetti LSAC BP MC2
65
The RRU Can be Used for FTS in Relevant Conditions
RRU, 473 K, 2.0 MPa, 15 wt% Co/SiO2, H2/CO = 2.02
66
The RRU Can be Used for FTS in Relevant Conditions
CO + H2 CO + H2 hydrocarbons RRU, 473 K, 2.0 MPa, 15 wt% Co/SiO2, H2/CO = 2.02
67
The RRU Can be Used for FTS in Relevant Conditions
CO + H2 CO + H2 hydrocarbons RRU, 473 K, 2.0 MPa, 15 wt% Co/SiO2, H2/CO = 2.02
68
The RRU Can be Used for FTS in Relevant Conditions
CO + H2 CO + H2 hydrocarbons C3 C5 C7 RRU, 473 K, 2.0 MPa, 15 wt% Co/SiO2, H2/CO = 2.02
69
The RRU Can be Used for FTS in Relevant Conditions
CO + H2 CO + H2 hydrocarbons rr C3 C5 C7 RRU, 473 K, 2.0 MPa, 15 wt% Co/SiO2, H2/CO = 2.02
70
H-Assisted CO Activation Paths in FTS H*-assisted CO* activation
1. CO + * CO* H*-assisted CO* activation 2. H2 + 2* H* 6. CO* + H* HCO* + * 7. HCO* + H* HCOH* + * 8. HCOH* + * CH* + OH* 9. OH* + H* H2O + 2* 10. CH* + H* CH2* + *
71
H-Assisted CO Activation Paths in FTS
0.0 1 2 3 4 5 6 0.2 0.4 0.6 0.8 1.0 1.2 Inlet CO partial pressure (MPa) rH2O/rCO2 Inlet H2 partial pressure (MPa) PH2 = 1.20 MPa PCO = 0.40 MPa rH2O rCO2 = K2K6k7 k3 PH2 Ojeda, et al., Unpublished Results & Ongoing Analysis Iron catalyst rH2O rCO2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.