Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics 13 General Physics 1

Similar presentations


Presentation on theme: "Physics 13 General Physics 1"โ€” Presentation transcript:

1 Physics 13 General Physics 1
Kinematics of Motion Projectile Motion MARLON FLORES SACEDON

2 Motion in Two or Three Dimensions: Projectile Motion
Introduction A body that moves through space usually has a curved path rather than a perfectly straight one. Projectile anybody that is given an initial velocity and then allowed to move under the influence of gravity. The path followed by a projectile is called its trajectory. x x x

3 Motion in Two or Three Dimensions: Projectile Motion
Assumptions Air resistance is neglected (๐ด๐‘–๐‘Ÿ ๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘›=0) Component of acceleration along x axis is zero ( ๐‘Ž ๐‘ฅ =0). So, motion is uniform. Component of acceleration along y axis is gravitational acceleration ( ๐‘Ž ๐‘ฆ =โˆ’๐‘”). So, Free-fall. x y 5. ๐‘ฃ= ๐‘ฃ ๐‘ฅ ๐‘ฃ ๐‘ฆ 2 ๐‘ฃ ๐‘ฆ =0 ๐‘ฃ= ๐‘ฃ ๐‘ฅ ๐‘ฃ ๐‘ฅ ๐‘ฃ ๐‘ฆ ๐‘ฃ 6. ๐‘ฅ= ๐‘ฃ ๐‘œ๐‘ฅ ๐‘ก ๐‘Ž ๐‘ฅ ๐‘ก 2 ๐‘ฃ ๐‘ฅ ๐‘ฃ ๐‘ฆ ๐‘ฃ ๐‘ฃ ๐‘ฅ โˆ’๐‘ฃ ๐‘ฆ ๐‘ฃ = ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ.๐‘ก x y 7. t= ๐‘ฅ ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ ๐‘ฃ ๐‘œ Eliminate ๐‘ก in Eq.7 in Eq.8 to come-up with time-independent equation ๐‘ฃ ๐‘œ๐‘ฅ ๐‘ฃ ๐‘œ๐‘ฆ ๐œƒ 8. ๐‘ฆ= ๐‘ฃ ๐‘œ๐‘ฆ ๐‘ก ๐‘Ž ๐‘ฆ ๐‘ก 2 = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ.๐‘กโˆ’ 1 2 ๐‘” ๐‘ก 2 1. ๐‘ฃ ๐‘œ๐‘ฅ = ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ ๐‘ฃ ๐‘ฅ = ๐‘ฃ ๐‘œ๐‘ฅ = ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ Time-independent Equation of Projectile ๐‘ฆ=๐‘ฅ๐‘‡๐‘Ž๐‘›๐œƒโˆ’ ๐‘” ๐‘ฅ ๐‘ฃ ๐‘œ 2 ๐‘๐‘œ๐‘  2 ๐œƒ 2. ๐‘ฃ ๐‘œ๐‘ฆ = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ ๐‘ฃ ๐‘ฆ = ๐‘ฃ ๐‘œ๐‘ฆ โˆ’๐‘”๐‘ก = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒโˆ’๐‘”๐‘ก

4 Motion in Two or Three Dimensions: Projectile Motion
Formulas for Projectile Motion 1. ๐‘ฃ ๐‘œ๐‘ฅ = ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ x y ๐‘ฃ ๐‘œ ๐œƒ ๐‘ฃ ๐‘œ๐‘ฅ ๐‘ฃ ๐‘œ๐‘ฆ ๐‘ฃ ๐‘ฅ โˆ’๐‘ฃ ๐‘ฆ ๐‘ฃ 2. ๐‘ฃ ๐‘œ๐‘ฆ = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ ๐‘ฃ ๐‘ฅ = ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ ๐‘ฃ ๐‘ฆ = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒโˆ’๐‘”๐‘ก 5. ๐‘ฃ= ๐‘ฃ ๐‘ฅ ๐‘ฃ ๐‘ฆ 2 6. ๐‘ฅ= ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ.๐‘ก 7. ๐‘ก= ๐‘ฅ ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ 8. ๐‘ฆ= ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ.๐‘กโˆ’ 1 2 ๐‘” ๐‘ก 2 The Time-independent Equation of Projectile 9. ๐‘ฆ=๐‘ฅ๐‘‡๐‘Ž๐‘›๐œƒโˆ’ ๐‘” ๐‘ฅ ๐‘ฃ ๐‘œ 2 ๐‘๐‘œ๐‘  2 ๐œƒ

5 Motion in Two or Three Dimensions: Projectile Motion
Maximum Range, Time to reach the Range Time to peak, & Maximum height B. For Time to reach the Range ( ๐‘‡ ๐‘…๐‘Ž๐‘›๐‘”๐‘’ ) From Formula # 6, Therefore: x y Maximum height ( ๐‘ฆ ๐‘š๐‘Ž๐‘ฅ ) = ? ๐‘ฅ=R ( ๐‘‡ ๐‘…๐‘Ž๐‘›๐‘”๐‘’ )= ๐‘… ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ ๐‘ฃ ๐‘œ = ๐‘ฃ ๐‘œ ๐’š ๐’Ž๐’‚๐’™ Time to peak ( ๐‘‡ ๐‘๐‘’๐‘Ž๐‘˜ ) = ? ๐‘ก= ๐‘‡ ๐‘…๐‘Ž๐‘›๐‘”๐‘’ ๐œƒ=๐œƒ C. For Time to Peak ( ๐‘ป ๐’‘๐’†๐’‚๐’Œ ): Velocity along y is zero, Formula #4 becomes ๐‘ฃ ๐‘œ ๐‘ฃ ๐‘œ๐‘ฅ ๐‘ฃ ๐‘œ๐‘ฆ Time to reach the Range ( ๐‘‡ ๐‘…๐‘Ž๐‘›๐‘”๐‘’ ) = ? ๐œƒ 0= ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒโˆ’๐‘” ๐‘ป ๐’‘๐’†๐’‚๐’Œ ๐‘ป ๐’‘๐’†๐’‚๐’Œ = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ ๐‘” Range ๐‘… =? So: 0=R๐‘‡๐‘Ž๐‘›๐œƒโˆ’ ๐‘” ๐‘… ๐‘ฃ ๐‘œ 2 ๐‘๐‘œ๐‘  2 ๐œƒ Formula needed ๐‘ฃ ๐‘ฆ = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒโˆ’๐‘”๐‘ก A. For Range: ๐‘” ๐‘… ๐‘ฃ ๐‘œ 2 ๐‘๐‘œ๐‘  2 ๐œƒ =R๐‘‡๐‘Ž๐‘›๐œƒ D. For Maximum Height ๐’š ๐’Ž๐’‚๐’™ : 8. ๐‘ฆ= ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ.๐‘กโˆ’ 1 2 ๐‘” ๐‘ก 2 From Formula # 9, ๐‘ฅ=๐‘… From Formula # 8, substitute ๐‘ป ๐’‘๐’†๐’‚๐’Œ to ๐‘ก 7. ๐‘ก= ๐‘ฅ ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ ๐œƒ=๐œƒ ๐‘…= 2 ๐‘ฃ ๐‘œ 2 ๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘” ๐’š ๐’Ž๐’‚๐’™ = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ. ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ ๐‘” โˆ’ 1 2 ๐‘” ( ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒ ๐‘” ) 2 The Time-independent Equation of Projectile 9. ๐‘ฆ=๐‘ฅ๐‘‡๐‘Ž๐‘›๐œƒโˆ’ ๐‘” ๐‘ฅ ๐‘ฃ ๐‘œ 2 ๐‘๐‘œ๐‘  2 ๐œƒ ๐‘ฃ ๐‘œ = ๐‘ฃ ๐‘œ ๐‘ฆ=0 ๐‘…= ๐‘ฃ ๐‘œ 2 ๐‘ ๐‘–๐‘›2๐œƒ ๐‘” ๐’š ๐’Ž๐’‚๐’™ = ๐‘ฃ ๐‘œ 2 ๐‘ ๐‘–๐‘› 2 ๐œƒ 2๐‘”

6 Motion in Two or Three Dimensions: Projectile Motion
Problem Exercise A tennis ball rolls off the edge of a table top 0.75 m above the floor and strikes the floor at a point 1.40 m horizontally from the edge of the table. Ignore air resistance. a). Find the magnitude of the initial velocity. b). Find the time of flight c). Find the magnitude and direction of the velocity of the ball just before it strikes the floor. a). The magnitude of the initial velocity ( ๐‘ฃ ๐‘œ ) From: The Time-independent Equation of Projectile 9. ๐‘ฆ=๐‘ฅ๐‘‡๐‘Ž๐‘›๐œƒโˆ’ ๐‘” ๐‘ฅ ๐‘ฃ ๐‘œ 2 ๐‘๐‘œ๐‘  2 ๐œƒ ๐‘ฅ=1.40๐‘š ๐‘ฆ=โˆ’0.75๐‘š ๐‘ฃ ๐‘œ ๐‘ฃ ๐‘œ =? ๐œƒ=0 โˆ’0.75=1.40๐‘‡๐‘Ž๐‘›0โˆ’ 9.81( ) 2 ๐‘ฃ ๐‘œ 2 ๐‘๐‘œ๐‘  2 0 ๐‘ฃ ๐‘œ = ( ) 2(0.75) =3.58 m/s From Formula ๐‘ก= ๐‘ฅ ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ b). Find the time of flight ๐‘ก ๐‘“๐‘™๐‘–๐‘”โ„Ž๐‘ก = ๐‘๐‘œ๐‘ 0 =0.39 ๐‘ ๐‘’๐‘ 0.75๐‘š c). Find the magnitude and direction of the velocity of the ball just before it strikes the floor. ๐‘ก ๐‘“๐‘™๐‘–๐‘”โ„Ž๐‘ก ๐‘ฃ ๐‘ฅ = ๐‘ฃ ๐‘œ ๐‘๐‘œ๐‘ ๐œƒ ๐‘ฃ ๐‘ฆ = ๐‘ฃ ๐‘œ ๐‘ ๐‘–๐‘›๐œƒโˆ’๐‘”๐‘ก ๐‘ฃ ๐‘ฅ = ๐‘ฃ ๐‘œ =3.58๐‘š/๐‘  1.40๐‘š ๐›ฝ ๐‘ฃ ๐‘“ ๐‘ฃ ๐‘ฆ =3.58 ๐‘ ๐‘–๐‘›0 โˆ’9.81(0.39)=-3.83m/s ๐‘ฃ ๐‘“ = =5.24๐‘š/๐‘  ๐›ฝ= ๐‘‡๐‘Ž๐‘› โˆ’ =46.93๐‘œ

7 Motion in Two or Three Dimensions: Projectile Motion

8 Motion in Two or Three Dimensions: Projectile Motion
๐‘ฃ ๐‘œ = ?

9 Motion in Two or Three Dimensions: Projectile Motion
๐‘ฃ ๐‘œ = ? Height cliff โ„Ž= ?

10 Motion in Two or Three Dimensions: Projectile Motion
Will the snowball hit the man? 1.90 m

11 Motion in Two or Three Dimensions: Projectile Motion
What distance D from the dock should the ship be when the equipment is thrown? Ignore air resistance.

12 Motion in Two or Three Dimensions: Projectile Motion
river 53o 15m 100m 40m ๐‘ฃ ๐‘œ =?

13 eNd


Download ppt "Physics 13 General Physics 1"

Similar presentations


Ads by Google