Download presentation
Presentation is loading. Please wait.
Published byAngelika Käte Schräder Modified over 6 years ago
1
Woodpile Structure Fabrication for Laser Acceleration at E163
Chris McGuinness Stanford – SLAC AARD ARD Seminar 02/03/09
2
Outline Gradient Woodpile Structure Fabrication
4 Layer Structure Analysis FTIR Spectroscopy Measurements Simulations Conclusion Where things are at for E163 Future Experiments
3
Gradient ?
4
Damage Fluence λ=800nm o Silicon
M. Mero, et. al. Phys. Rev. B (2005) λ=800nm D.M. Simanovskii, et. al. PRL (2003) Ben Cowan, Stanford Graduate Thesis (2007) o Silicon
5
Woodpile Band Diagram
6
Dielectric Accelerator Structures
Gratings PBG Fibers 3D Photonic Crystal (Woodpile) Thorlabs HC Damage impedence = Eacc^2/2umax*c = 6.1ohms Characteristic Impedence = Eacc^2*lambda^2/P = 460ohms
7
Accelerating Mode Top View Ratio=1.41 Side View Front View
8
Gradient SiO2 Eacc=2.76 GV/m @800nm(3.75e5GHZ) ZnS Eacc=1.04 GV/m
101 SiO2 Eacc=2.76 GV/m @800nm(3.75e5GHZ) ZnS Eacc=1.04 GV/m @5μm(6e4GHZ) Al3O2 Eacc=2.0 GV/m @800nm(3.75e5GHZ) Si Eacc=337 MV/m @1550nm(1.94e5GHZ)
9
Outline Gradient Woodpile Structure Fabrication
4 Layer Structure Analysis FTIR Spectroscopy Measurements Simulations Conclusion Where things are at for E163 Future Experiments
10
Woodpile Structure Parameter Scaling* w=.2757a h=.3486a λ=2.703a
w=500nm λ=4.9μm a=1.814 h=632nm Δ=91nm w=300nm λ=2.94μm a=1.09μm h=379nm Δ=54nm h w a Δ *Cowan, B. “Photonic Crystal Laser-Driven Accelerator Structures” (PhD dissertation Stanford University 2007) 77.
11
Fabrication Process Step 1: SiO2 Deposition Uniformity = 1-2%
resist Silicon Substrate Si Substrate Photo resist 1 2 h SiO2 Step 1: SiO2 Deposition Uniformity = 1-2% Step 2: Resist Coat Step 3: Optical Lithography Minimum feature size 450nm Alignment 3σ=60nm Step 4: Dry etch SiO2 Step 5: Poly-si Deposition 4 3 w a 5 Poly-si Silicon Substrate SiO2 poly-si
12
Fabrication Process Step 6: Chemical Mechanical Polish
Time Frictional Force 10sec=15nm 6 Step 6: Chemical Mechanical Polish Step 7: Repeat process for remaining layers Final Step: Oxide Etch SiO2 poly-si 7 8
13
Completed Four Layer Test Structure
October 2008
14
Outline Gradient Woodpile Structure Fabrication
4 Layer Structure Analysis FTIR Spectroscopy Measurements Simulations Conclusion Where things are at for E163 Future Experiments
15
FTIR Spectroscopy Measurements
16
Simulation Using MPB
17
Finite Thickness Simulation Reflection/Transmission (averaged over S&P polarizations, and polar angle θ, φ=0)
18
Simulation Reflection/Transmission (averaged over S&P polarizations, and polar angle θ, φ=0)
19
Simulation vs. Measurement
Bandgap from MPB
20
SEM Profile Images
21
Simulation vs. Measurement
Bandgap from MPB
22
Summary Completed the fabrication of a four layer test structure
Verified a process which will be used for the fabrication of a 15 layer structure with a defect Taken Spectroscopy measurements Developed simulation tools that agree well measurements
23
Current State and Future of E163
Phase 1: Characterize laser/electron energy exchange in vacuum Phase 2: Demonstrate optical bunching and acceleration Phase 3: Test multicell lithographically produced structures
24
Future Experiments Fabrication Experiments
15 layer structure with defect Couplers Focusing Elements Experiments Wakefield Measure modes excited by bunched electron beam Excite defect Measure mode profile Measure coupling efficiency Net Acceleration
25
Acknowledgments E163 Collaboration Byer Group NLCTA Operators
Bob Siemann, Eric Colby, Chris Sears, Ben Cowan, Joel England, Bob Noble, Jim Spencer Byer Group Bob Byer, Tomas Plettner, Alex Serpry, Patrck Liu NLCTA Operators Janice Nelson, Doug McCormick Stanford Nanofab Mary Tang, Mahnaz Mansourpour, Maurice Stevens, Ed Myers, Uli Thumser, Nancy Latta
26
THIS IS THE END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.