Download presentation
Presentation is loading. Please wait.
1
Angles that have a sum of 90°
Angles that share a side. Two adjacent angles whose non-common sides form a line. Angles whose sides form two pairs of opposite rays.
2
52° ° ∠ABD ∠BDC complementary 52° ° ∠ABD ∠BDE supplementary ∠CDB ∠EDB adjacent
3
90° m∠2 90° ° ° 180° ° 180° ° °
4
Complementary: ∠DEF & ∠B
Supplementary: ∠FEG & ∠B Adjacent: ∠DEF & ∠FEG m∠1 + m∠2 = 90° m∠2 = 90° - m∠1 m∠2 = 90° - 73° m∠2 = 17° m∠3 + m∠4 = 180° m∠3 = 180° - m∠4 m∠3 = 180° - 37° m∠3 = 143°
5
180° 180° 3x x ° 7x ° 7x ° x 25 3x (25) ° 4x (25) ° 83° °
6
m∠BCA + m∠DCA = 180° 5x x + 3 = 180° 11x + 4 = 180° 11x = 176° x = 16 m∠BCA = 5x + 1 m∠BCA = 5(16) + 1 m∠BCA = 81° m∠DCA = 6x + 3 m∠DCA = 6(16) + 3 m∠DCA = 99°
7
intersecting lines adjacent ∠ ∠3 opposite rays ∠ ∠ ∠ ∠3
8
Linear Pairs: None Vertical Angles: ∠1 & ∠4, ∠2 & ∠5, ∠3 & ∠6
9
4x° supplementary x° x° ° 5x° ° x ° 36° 4(36) °
10
m∠1 = x° and m∠2 = 3x° m∠1 + m∠2 = 180° x + 3x = 180° 4x = 180° x = 45 m∠1 = x° m∠ = 45° m∠2 = 3x° m∠2 = 3(45) m∠2 = 135°
11
coplanar collinear intersect adjacent straight angle interior
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.