Download presentation
Presentation is loading. Please wait.
1
Zb states (All Results from Belle)
Jin Li New Hadron Workshop
2
Anomalies in (5S) decay
hb(2P) hb(1P) (2S) (1S) b(2S) b(1S) (4S) (10860) (11020) JPC = 0 + - 1+ 1 -- 9.50 9.75 10.00 10.25 10.50 10.75 11.00 Mass, GeV/c2 2M(B) +– 260 430 290 190 330 6 2 partial (keV) Belle PRL100,112001(2008) 100 [(5S) (1,2,3S) +–] >> [(4,3,2S) (1S) +–] _ Rescattering of on-shell B(*)B(*) ? Meng and Chao PRD77, (2008) Chen et al., PRD84, (2011) Belle PRL108,032001(2012) (5S) hb(1,2P) +– are not suppressed expect suppression QCD/mb spin-flip Heavy Quark Symmetry Violation
3
Anomalies in (5S) decay
hb(2P) hb(1P) (2S) (1S) b(2S) b(1S) (4S) (10860) (11020) JPC = 0 + - 1+ 1 -- 9.50 9.75 10.00 10.25 10.50 10.75 11.00 Mass, GeV/c2 2M(B) 260 430 290 6 2 partial (keV) hb production via intermediate charged states Zb – + + Zb Belle PRL108,032001(2012) (5S) hb(1,2P) +– are not suppressed expect suppression QCD/mb spin-flip Heavy Quark Symmetry Violation
4
The analysis of hb(nP)π+π−
Studying the decay (5S) hb(nP) +-: led to observation of Zb Look at the missing mass of a single pion π−, MM(π−) = M(hb π+). Then fit MM(π +π− ) in bins of MM(π−). Fit Function: Significances with systematic: 1 resonance v.s. 0: 6.6 σ 2 resonances v.s. 0: 16 σ
5
Resonant structure of (5S) (bb) +–
_ (5S) hb(1P)+- (5S) hb(2P)+- Belle PRL108,122001(2012) no non-res. contribution Two peaks in all modes phsp Minimal quark content _ bbud phsp flavor-exotic states M[ hb(1P) π ] M[ hb(2P) π ] Dalitz plot analysis (5S) (1S)+- (5S) (2S)+- (5S) (3S)+- note different scales
6
Angular analyses for Zb+
arxiv: Example : (5S) Zb+(10610) - [(2S)+] - i (i,e+), [plane(1,e+), plane(1, 2)] cos1 cos2 , rad non-resonant combinatorial Color coding: JP= (0 is forbidden by parity conservation) All angular distributions are consistent with JP=1+ , with other JP disfavored at 3 level.
7
Zb results Angular analysis both states are JP = 1+
’ Average over 5 channels M1 = 2.0 MeV 1 = 18.4 2.4 MeV MZb – (MB+MB*) = 2.1 MeV M2 = 1.5 MeV 2 = 2.2 MeV MZb’ – 2MB* = 1.7 MeV Angular analysis both states are JP = 1+ Decays IG = 1+ (C= –) Angular plot Phase btw Zb and Zb amplitudes is 0o for (nS) and 180o for hb(mP) ’
8
Zb amplitudes Properties of Zb amplitudes and phases are consistent with molecular structure. = 180o = 0o hb (2S) M(hb), GeV/c2 hb(1P) yield / 10MeV Dip due to destructive interference with non-resonant amplitude in the whole Dalitz plane. Information on JP of Zb .
9
Molecule explanation of Zb
Wave func. at large distance – B(*)B* B*B* = B B* = + – Bondar et al, PRD84,054010(2011) Proximity to thresholds favors molecule over tetraquark Zb hb(mP) S-wave Zb’ not suppressed Explains Why hb is unsuppressed relative to Relative phase ~0 for and ~1800 for hb Production rates of Zb(10610) and Zb(10650) are similar Widths .
10
More states can be predicted
Sbb Sqq 1 States IG(JP) Zb,Zb’ (1+) Wb0,Wb0’ 1−(0+) Wb −(1+) Wb −(2+)
11
Molecular bottomiums Wb0 Xb Wb1 Wb2 Zb U(?S)
Voloshin, PRD 84, (2011) U(6S) h U(5S) r w g r r p g w B*B* w Up hbphbr Ur Ur hbp Uh hbw Uw hbh g Uw g BB* Ur Uw BB Zb Wb0 Xb Wb1 Wb2 11 0-(1+) 1+(1+) 0+(0+) 1-(0+) 0+(1+) 1-(1+) 0+(2+) 1-(2+) 0-(1-) IG(JP)
12
Other explanations 1. Threshold effect due to initial pion emission Chen Liu PRD84,094003(2011) Zb Zb’ B(*) B(*) (5S) (2S) B(*) _ S-wave M [(2S)π] Danilkin Orlovsky Simonov PRD85,034012(2012) 2. Coupled-channel resonance multiple re-scatterings pole Zb B(*) B(*) B(*) Zb’ + + ... (5S) B(*) _ B(*) _ B(*) _ (2S) (2S) (2S)
13
Systematic study of B(*)B(*) bound states
3. Deuteron-like molecule B(*) ,,, exchange (5S) B(*) _ (2S) Ohkoda et al PRD86, (2012)
14
Study of Zb→B*B(*) _ For the ϒ(5S) →B*B(*) + channel: _
Fully reconstruct one B meson in five exclusive decay modes. Look at recoil mass of B (for missing B) rM(B) and of the pion (for two B combination) rM(). _
15
Clear BB* and B*B* signals
_ _ Select two peaks Full reconstruction of one B in 5 modes recoil mass _ BB* M(B) Mmiss(B) _ BB _ B*B* BF[ (5S) B(*)B(*) ] _ preliminary PRD81,112003(2010) Belle fb-1 significance Belle 23.6 fb-1 _ BB BB* + BB* B*B* <0.60 % at 90% C.L. (4.25 0.44 0.69) % (2.12 0.29 0.36) % (0 1.2) % (7.3 2.3) % (1.0 1.4) % _ _ _ _ 9.3 5.7 _
16
Observation of ZbBB* and Zb’B*B*
_ Zb’ BB* is suppressed w.r.t. B*B* despite larger PHSP _ M (BB*) Zb preliminary 8 arXiv: Zb’ ? Challenging for tetraquark Molecule admixture of BB* in Zb’ is small _ phsp Assuming Zb decays are saturated by these channels: recoil mass of _ M (B*B*) Zb’ 6.8 phsp Crucial input for the models
17
Absolute branching fractions (3 body)
Br((10860)→ (1S) π+π- )= [4.45 ± 0.16(stat.) ± 0.35(syst.)] x 10-3 Br((10860)→ (2S) π+π- )= [7.97 ± 0.31(stat.) ± 0.96(syst.)] x 10-3 Br((10860)→ (3S) π+π- )= [2.88 ± 0.19(stat.) ± 0.36(syst.)] x 10-3 c.f. PRD 81, (2010) f(BB* )=(7.3 ± 2.2 ±0.8) % f(B*B* )=(1.0±1.4 ±0.4) % Br((10860)→ BB* ) = [28.3 ± 2.9± 4.6] x 10-3 Br((10860)→ B*B*π) = [14.1 ± 1.9 ± 2.4] x 10-3 Fractions of sub-modes:
18
Study of e+e− (5S) (nS)00
preliminary BF[(5S)(1S)00] = (2.250.110.20) 10-3 BF[(5S)(2S)00] = (3.790.240.49) 10-3 (2S) in agreement with isospin relations (1S) (1S)π+π- (nS)π+π− fit curve (nS)π0π0 data points (BG subtracted) M miss (0 0) Is there a neutral Zb partner? (2S)π+π-
19
Fit (2S)00 structure Clear Zbs signals are seen in (2S)π0π0
arXiv: Dalitz plot analysis with Zbs without Clear Zbs signals are seen in (2S)π0π0 Significance of Zb(10610) is 5.3σ (4.9σ with systematics) Zb(10650) is less significant (~2σ) Fit gives M(Zb0(10610) ) =10609±8±6 MeV cf: M(Zb+)= ±2.0 MeV Belle PRELIMINARY
20
Search for partners of X(3872)
C-odd neutral partner search Charged partner X+ search J/ψ+0 channel J/ψη channel χc1γ channel Preliminary PRD 84, (2011)
21
Summary Zb+ explanation as molecular states and in (nS)+ and hb(nP) + decays. Observation of Zb+ decays to BB* and B*B* final states in the (5S) B*B(*) + decay study. Zb(10610) decays dominantly to BB*, and Zb(10650) decays dominantly to B*B*. Supporting the molecule explanation. Observation of the neutral partner Zb0(10610) in (5S)(nS)00 decay. Mass of Zb0(10610)= ± 8 ± 6 MeV . Direct charmonium partner not found. Other recent progress on bottomonium, such as hb(nP), ηb(nS), χb(3P) not covered.
22
BACKUP
23
The bottomonium family
(1S) (2S) (3S) (4S) 2M(B) BaBar, CLEO collected large ϒ(3S) data because its rich decay trees.
24
Results of +− missing mass study
hb(1P) hb(2P) (1S) (2S) (3S) 121.4 fb-1 2S1S residuals PRL hb(1,2P) JPC=1+- 1st observations 3S1S
25
(2) (nS)ππ production shape
Belle,Phys.Rev.,D82,091106R(2010) Rb Energy scan mean of shapes of () and hadronic cross section Rb shapes differ by 2.0
26
CLEO-c’s e+e− → +− hc cross section
(hc +–) (J/ +–) Γ(Y(4260) → J/ψπ+π−)>508 90% C.L. Large!! X. H. Mo et al., Phys. Lett. B 640 (2006) 182 An interesting comparison! PRL107, (2011) arXiv: +−hc production is enhanced at Y(4260) +−hb may be enhanced at Yb Substructure of +− hc in Y(4260) has not been studied. Original Motivation for hb search Substructure of +− hb : Enough statistics in Belle’s ϒ(5S) data.
27
Observation of hb(1P,2P) b(1S)
(5S)hb(nP) +– b(1S) Fit Mmiss(+-) spectra [ hb yield] in bins of Mmiss(+-) arxiv: MHF(1S) (11020) Belle : 57.9 2.3 MeV 3 11.00 (10860) hb(1P) PDG’12 : 69.3 2.8 MeV b(1S) 10.75 +- BaBar (3S) (4S) 2M(B) 10.50 BaBar (2S) b(3S) (3S) hb(2P) b(2P) hb(2P) b(1S) 10.25 CLEO (3S) b(2S) (2S) 10.00 hb(1P) b(1P) pNRQCD LQCD 9.75 Kniehl et al, PRL92,242001(2004) Mmiss (+-) (n) Meinel, PRD82,114502(2010) (1S) 9.50 b(1S) MHF(1S) Belle result decreases tension with theory JPC = 0 + - 1 -- 1 + - (0,1,2)++ First measurement = MeV –3.7 –2.0 as expected
28
First evidence for b(2S)
e+e-(5S)hb(2P) +– b(2S) MHF(2S) = MeV –4.5 First measurement arxiv: PRL pNRQCD LQCD b(2S) Belle 4.2 w/ syst In agreement with theory Mmiss (+-) (2) (2S) = 4 8 MeV, < 90% C.L. expect 4MeV Branching fractions Expectations BF[hb(1P) b(1S) ] = 49.2 % BF[hb(2P) b(1S) ] = 22.3 % BF[hb(2P) b(2S) ] = 47.5 % 41% 13% 19% –3.3 –3.3 Godfrey Rosner PRD66,014012(2002) –7.7 c.f. BESIII BF[hc(1P) c(1S) ] = 54.38.5 % 39%
29
Observation of Y(5S)gY(1D)p+p-
Y(1S)[m+m-]p+p-gg final state Three peaks in MM(p+p-): Y(2S) p+p- Y(1D) p+p- Y(2S)[Yp+p-]h[gg] reflection After cb(1P)gYg selection preliminary statistical significance 9s B[Y(5S)gY(2S)p+p-] = (7.51.10.8) 10-3 (cross check) B[Y(5S)gY(1D)p+p-] B[Y(1D)gcb(1P)ggY(1S)gg] = (2.00.40.3) ×10-4 P.S. : An evidence of Y(1D) was seen in inclusive MM(p+p-) spectra 29
30
Angular Analysis JP = 1+, 1−, 2+, 2−
Zb velocity is very small ( β<0.02) measure all pion momenta in the c.m. frame. (5S)→Zb((nS),hb+ π1)π2 1= (π1,e+) 2= (π2,e+) = (plane(π1,e+)),plane(π1, π2)) JP = 1+, 1−, 2+, 2− Example: (5S)→ Zb(10610) π2 → (2S)π1 π2 Non-resonant
31
Angular Analysis (hb final state)
JP = 1+, 1−, 2+, 2− Example: (5S)→ Zb(10610) π2 → hb(1P)π1 π2 Probabilities at which other JP hypotheses are disfavored with respect to 1+
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.