Presentation is loading. Please wait.

Presentation is loading. Please wait.

Predicting the Shear Failure of Dual-Phase Steels

Similar presentations


Presentation on theme: "Predicting the Shear Failure of Dual-Phase Steels"— Presentation transcript:

1 Predicting the Shear Failure of Dual-Phase Steels
Numiform 2010, Pohang, Korea June 16, 2010 R. H. Wagoner, J.H. Kim1, J. Sung2, D. K. Matlock3, D.Y. Kim1 The Ohio State University 1KIMS, S. Korea 2Dongbu Steel, S. Korea 3Colorado School of Mines, USA

2 Outline Background Results Practical Application
Draw-Bend Fracture Test Thermo-Mechanical (T-M) FEM H/V Constitutive Equation Results Practical Application Problems with Direct Use Adiabatic Const. Eq. Plane-strain FE Model Analytical Model Framework for R/t-Affected Failure Conclusions 2

3 Background 3 3

4 Jim Fekete et al, AHSS Workshop, 2006
Shear Fracture of AHSS Jim Fekete et al, AHSS Workshop, 2006

5 Unpredicted by FEA / FLD
Stoughton, AHSS Workshop, 2006 5

6 Draw-Bend Fracture Test
Background: Draw-Bend Fracture Test 6 6

7 Draw-Bend Fracture Test (DBF): V1, V2 Constant
190.5 mm Start 444.5 mm (10”) V2 = aV1 Max. Finish R 190.5 mm Specimen width: 25mm Tool radius choices: 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 9/16, 12/16 inch 3.2, 4.8, 6.4, 7.9, 9.5, 11.1, 14.3, 19 mm a = V2/V1: 0 and 0.3 Start 444.5 mm(10”) uf V1 Max. Finish Wagoner et al., Esaform, 2009 7 7

8 Phenomenological Failure Types
Type I Type II Type III 65o V2 V1 Type I: Tensile failure (unbent region) Type II: Shear failure (not Type I or III) Type III: Shear failure (fracture at the roller) 8 8

9 Thermo-Mechanical FEM
Background: Thermo-Mechanical FEM 9 9

10 FE Draw-Bend Model: Thermo-Mechanical (T-M)
U2, V2 hmetal,air = 20W/m2K Abaqus Standard (V6.7) 3D solid elements (C3D8RT), 5 layers Von Mises, isotropic hardening Symmetric model m = 0.04 hmetal,metal = 5kW/m2K Kim et al., IDDRG, 2009 U1, V1

11 Selected Materials 11 11

12 H/V Constitutive Equation
1. Background: H/V Constitutive Equation 12 12

13 “H/V” Constitutive Framework
Special: Standard: Sung et al., Int. J. Plast. 2010

14 “H/V” Constitutive Eq.: Large-Strain Verification
14

15 FE Simulated Tensile Test: H/V vs. H, V
15 15

16 Predicted ef, H/V vs. H, V: 3 alloys, 3 temperatures
Standard deviation of ef: simulation vs. experiment Hollomon Voce H/V DP590 0.05 (23%) 0.05 (20%) 0.02 (7%) DP780 0.03 (18%) 0.04 (22%) 0.01 (6%) DP980 0.04 (30%) 0.03 (21%) 0.01 (5%) 16 16

17 2. Results 17 17

18 Thermo-Mechanical Simulation
DP mm, V1=51mm/s, V2/V1=0, R/t=4.5

19 Isothermal Simulation
DP mm, V1=51mm/s, V2/V1=0, R/t=4.5

20 Front Stress vs. Front Displacement
20

21 Displacement to Maximum Front Load vs. R / t
21

22 Interim Conclusions Deformation-induced heating dominates the error in predicting shear failures (FLD/FEM). Damage also occurs, but is a smaller effect for most alloys. [Exception: DP 980(D) TD] New constitutive equation is essential. (Large-strain accuracy, incorporate T in strain hardening.) Most shear failures are predictable. (But impractical: solid elements, T-M model.) 22

23 3. Practical Application Problems with Direct Use
23 23

24 DBF Test and FE vs. Industrial Practice and FE
~Plane strain High rate / adiabatic Shell elements / Iso-T FE FLD – large R/t, low rate Fracture? Draw-Bend Test, 25mm Strip Width 24

25 DBF Formability: DP980(A), RD vs. TD
* Directional Formability: TD=RD 25 25

26 DBF Formability: DP980(D), RD vs. TD
* Directional Formability: RD>TD 26 26

27 3. Practical Application
Adiabatic Const. Eq. 27 27

28 Simulated D-B Test: Effect of Draw Speed
28

29 Adiabatic Constitutive Equation
29

30 3. Practical Application
Plane-Strain FE Model 30 30

31 FE Plane Strain DBF Model
U2, V2 = 0 Abaqus Standard (V6.7) Plane strain solid elements (CPE4R), 5 layers Von Mises, isotropic hardening Isothermal, Adiabatic, Thermo-Mechanical U1, V1

32 Plane Strain DBF Test DP mm, R/t=3.4 32

33 3. Practical Application Analytical Model (PS, Adiabatic)
33 33

34 Analytical Plane Strain Bending Model
Fracture Criterion: Fracture occurs at Tmax for given R, to Yoshida, 2003 Wagoner, 2007 34

35 Analytical Model Results for DP780 vs. PS FE
35

36 DBF Interpretation: Plane-strain vs. Tension
36

37 Analytical Model vs. DBF: DP980
37

38 Framework for R/t-affected Failure
(Preliminary) 38 38

39 Inner and Outer Strains at Maximum Load
39

40 Membrane Strains at Maximum Load
40

41 Membrane Strains (R/t Affected Only)
41

42 R/t-Affected Membrane Strains vs. t/R
42

43 Analytical Model: Model vs. Fit
43

44 Analytical Model: Model vs. Fit
44

45 PS T-M Model: Model vs. Fit
45

46 PS T-M Model: Model vs. Fit
46

47 Next Steps Simulate adiabatic limit strains – PS, 3-D, solid, shell. Add to framework. Add simple fracture limit (emax?). Apply R/t criterion to a) DBF results, b) practical forming problems (GM). 47

48 Conclusions Simple models clarify DBF results. Three failure mechanisms: tension, R/t localization, fracture Maximum tension load determines failure by plastic localization (Yoshida 2003, Hudgins 2010) Promising framework introduced for predicting R/t-affected localization failures. 48

49 References R. H. Wagoner, J. H. Kim, J. H. Sung: Formability of Advanced High Strength Steels, Proc. Esaform 2009, U. Twente, Netherlands, 2009 (CD) J. H. Sung, J. H. Kim, R. H. Wagoner: A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plasticity, (accepted). A.W. Hudgins, D.K. Matlock, J.G. Speer, and C.J. Van Tyne, "Predicting Instability at Die Radii in Advanced High Strength Steels," Journal of Materials Processing Technology,  vol. 210, 2010,  pp J. H. Kim, J. Sung, R. H. Wagoner: Thermo-Mechanical Modeling of Draw-Bend Formability Tests, Proc. IDDRG: Mat. Prop. Data for More Effective Num. Anal., eds. B. S. Levy, D. K. Matlock, C. J. Van Tyne, Colo. School Mines, 2009, pp (ISDN ) R. H. Wagoner and M. Li: Simulation of Springback: Through-Thickness Integration, Int. J. Plasticity, 2007, Vol. 23, Issue 3, pp M. R. Tharrett, T. B. Stoughton: Stretch-bend forming limits of 1008 AK steel, SAE technical paper No , 2003. M. Yoshida, F. Yoshida, H. Konishi, K. Fukumoto: Fracture Limits of Sheet Metals Under Stretch Bending, Int. J. Mech. Sci., 2005, 47, pp 49

50 Thank you ! 50

51 Material Parameters DP590 DP780 DP980 H (MPa) 1051 1655 1722 n 0.179
DP590 DP780 DP980 H (MPa) 1051 1655 1722 n 0.179 0.213 0.154 V (MPa) 643.9 752.1 908.1 A 0.576 0.265 0.376 B 22.44 30.31 39.64 b 2.67 E-4 5.78 E-4 3.86 E-4 a1 0.818 0.507 0.586 a2 1.93 E-3 1.87 E-3 1.49 E-3 a 2.0 E-3 3.0 E-3 2.1 E-3 1.03 E-2 1.15 E-2 8.6 E-3 (/s) 0.001 TRT(°C) 25 51

52 Material Properties Orientation Thickness (mm) UTS (MPa) 0.2% YS eu
(%) et n r** YS/UTS DP590(B)-CR-1.4mm RD 1.35 605 352 15.9 23.2 0.21 1.02 0.58 TD 1.37 616 359 15.8 1.25 DD 620 351 16.3 23.6 0.83 0.57 DP780(D)-GI-1.4mm 1.40 815 499 12.7 17.9 0.19 0.87 0.61 810 486 12.9 17.2 0.18 0.69 0.60 803 480 18.1 0.89 DP980(D)-GA-1.45mm 1.43 1022 551 9.9 13.3 0.15 0.82 0.54 1021 584 9.4 0.13 0.80 986 511 1.04 0.52 TRIP780(D)-GA-1.6mm 1.60 857 471 14.9 19.2 0.22 0.81 0.55 1.57 860 501 13.9 18.4 1.20 844 481 21.3 1.03 52

53 Analytical Model – Curvilinear Derivation
Fracture Criterion: Fracture occurs at Tmax for given R, to 53

54 Uf: A More Sensitive Measure of Formability
54 54

55 Peak Front Stress vs. Bending Ratio (R/t): DP 780
55

56 Peak Front Stress vs. Bending Ratio (R/t): DP 980
56

57 Peak Front Stress vs. Bending Ratio (R/t): DP 590
57

58 Measured vs. Predicted Failure Types
V1 (mm/s) R/t = 2.3 3.4 4.5 5.7 6.8 7.9 10.2 13.6 DP RD 51 III (III) I (I) 13 2.5 I (III) DP RD III (I) DP RD V2/V1=0 Values in the parentheses are predicted ones.

59 Simplified FE Results 59


Download ppt "Predicting the Shear Failure of Dual-Phase Steels"

Similar presentations


Ads by Google