Download presentation
Presentation is loading. Please wait.
1
Trigonometry (4103)
2
Trigonometry “triangle measure”
3
A little bit of review...
4
The 3 angles from a triangle ALWAYS equal 180o
b c a + b + c = 180o
5
Find the total of the other angles
30◦
6
Find the total of the other angles
= 90◦ 30◦
7
Find the total of the other angles
Total angles = 180◦ 90◦ + 30◦ + a = 180◦ 120◦ + a = 180◦ a = 180◦ – 120◦ a = 60◦ a = 90◦ 30◦
8
All sides are the same length
Equilateral triangle All sides are the same length
9
Equilateral triangle All angles are the same (180o ÷ 3 = 60o)
10
Two sides are the same length
Isosceles triangle Two sides are the same length
11
Isosceles triangle Two angles are the same
12
No sides are the same length
Scalene triangle No sides are the same length
13
Scalene triangle No angles are the same
14
Right-angled triangle
hypotenuse side side
15
Right-angled triangle
side opposite to angle A hypotenuse A side adjacent (next to) angle A
16
Right-angled triangle
hypotenuse (c) side (a) 90o side (b)
17
Pythagorean Theorem c2 = a2 + b2 hypotenuse (c) side (a) side (b)
18
What if you switch a and b?
c2 = a2 + b2 hypotenuse (c) side (a) side (b)
19
What if you switch a and b?
c2 = a2 + b2 hypotenuse (c) side (b) Doesn’t matter, they’re both sides! side (a)
20
Right-angled triangle
B side adjacent to angle B hypotenuse A side opposite to angle B
21
What is the length of the hypotenuse?
c2 = a2 + b2 hypotenuse (c) side (a) x cm 3 cm side (b) 4 cm
22
What is the length of the hypotenuse?
c2 = a2 + b2 hypotenuse (c) x2 = x2 = x2 = 25 x2 = 25 x = 5 cm side (a) x cm 3 cm side (b) 4 cm
23
What is the length of the side?
c2 = a2 + b2 hypotenuse (c) side (a) 10 cm x cm side (b) 5 cm
24
What is the length of the side?
c2 = a2 + b2 102 = x2 + 52 100 = x2 + 25 100 – 25 = x2 75 = x2 x2 = 75 x = 8.7 cm hypotenuse (c) side (a) 10 cm x cm side (b) 5 cm
25
Trigonometric ratios depend on which angle is used
sine cosine tangent
26
Trigonometric ratios depend on which angle is used
sine cosine tangent
27
Sine ratio (SOH) sin A = opposite hypotenuse A side opposite
to angle A hypotenuse A side adjacent to angle A
28
Sine ratio (SOH) sin B = opposite hypotenuse B A side adjacent
to angle B hypotenuse A side opposite to angle B
29
Cosine ratio (CAH) cos A = adjacent hypotenuse A side opposite
to angle A hypotenuse A side adjacent to angle A
30
Cosine ratio (CAH) cos B = adjacent hypotenuse B A side adjacent
to angle B hypotenuse A side opposite to angle B
31
Tangent ratio (TOA) tan A = opposite adjacent A side opposite
to angle A hypotenuse A side adjacent to angle A
32
Tangent ratio (TOA) tan B = opposite adjacent B A side adjacent
to angle B hypotenuse A side opposite to angle B
33
SOH CAH TOA Trigonometric ratios sin θ = opp cos θ = adj tan θ = opp
hyp hyp adj
34
Find the lengths of the missing sides and angle (right triangle)
B 7 cm 35o A C
35
Find the lengths of the missing sides and angle (right triangle)
B 7 cm 35o 90o A C
36
Step 1. List the information given, and what is needed
What we know: mBC = 7 cm A = 35o C = 90o B 7 cm What we need: mAB = ? mAC = ? B = ? 35o 90o A C
37
Step 2. Find the missing side AB
Look at the triangle from A: mBC = opposite mAB = hypotenuse B hyp 7 cm (opp) 35o 90o A C
38
Step 2. Find the missing side AB
Look at the triangle from A: mBC = opposite mAB = hypotenuse B hyp 7 cm (opp) ? = opp 35o 90o hyp A C
39
Step 2. Find the missing side AB
Look at the triangle from A: mBC = opposite mAB = hypotenuse B hyp 7 cm (opp) sin θ = opp 35o 90o hyp A C
40
Step 2. Find the missing side AB
sin θ = opp B hyp hyp sin 35o = opp 7 cm (opp) hyp 35o 90o A C
41
Step 2. Find the missing side AB
sin θ = opp B hyp hyp sin 35o = opp 7 cm (opp) hyp 0.574 = 7 cm 35o 90o hyp A C
42
Step 2. Find the missing side AB
sin θ = opp B hyp hyp sin 35o = opp 7 cm (opp) hyp 0.574 = 7 cm 35o 90o hyp A C
43
Step 2. Find the missing side AB
sin θ = opp B hyp hyp sin 35o = opp 7 cm (opp) hyp 0.574 = 7 cm 35o 90o hyp A C 0.574 (hyp) = 7 cm
44
Step 2. Find the missing side AB
sin θ = opp B hyp hyp sin 35o = opp 7 cm (opp) hyp 0.574 = 7 cm 35o 90o hyp A C 0.574 (hyp) = 7 cm
45
Step 2. Find the missing side AB
sin θ = opp B hyp hyp sin 35o = opp 7 cm (opp) hyp 0.574 = 7 cm 35o 90o hyp A C 0.574 (hyp) = 7 cm hyp = 12.2 cm
46
Step 3. Find the missing side AC
Look at the triangle from A: mBC = opposite mAB = hypotenuse mAC = adjacent B 12.2 cm (hyp) 7 cm (opp) 35o 90o A C (adj)
47
Step 3. Find the missing side AC
Look at the triangle from A: mBC = opposite mAB = hypotenuse mAC = adjacent B 12.2 cm (hyp) 7 cm (opp) Since we have two sides, we have a choice of trig ratios! 35o 90o A C (adj)
48
Step 3. Find the missing side AC
cos θ = adj B hyp 12.2 cm (hyp) or 7 cm (opp) tan θ = opp 35o 90o adj A C (adj)
49
Step 3. Find the missing side AC
cos θ = adj B hyp 12.2 cm (hyp) cos 35o = adj 7 cm (opp) hyp 35o 90o A C (adj)
50
Step 3. Find the missing side AC
cos θ = adj B hyp 12.2 cm (hyp) cos 35o = adj 7 cm (opp) hyp 0.819 = adj 35o 90o 12.2 cm A C (adj)
51
Step 3. Find the missing side AC
cos θ = adj B hyp 12.2 cm (hyp) cos 35o = adj 7 cm (opp) hyp 0.819 = adj 35o 90o 12.2 cm A C (adj)
52
Step 3. Find the missing side AC
cos θ = adj B hyp 12.2 cm (hyp) cos 35o = adj 7 cm (opp) hyp 0.819 = adj 35o 90o 12.2 cm A C (adj) 0.819 (12.2 cm) = adj
53
Step 3. Find the missing side AC
cos θ = adj B hyp 12.2 cm (hyp) cos 35o = adj 7 cm (opp) hyp 0.819 = adj 35o 90o 12.2 cm A C (adj) 0.819 (12.2 cm) = adj adj = 10 cm
54
Step 3. Find the missing side AC
tan θ = opp B adj 12.2 cm (hyp) tan 35o = opp 7 cm (opp) adj 35o 90o A C (adj)
55
Step 3. Find the missing side AC
tan θ = opp B adj 12.2 cm (hyp) tan 35o = opp 7 cm (opp) adj 0.700 = 7 cm 35o 90o adj A C (adj)
56
Step 3. Find the missing side AC
tan θ = opp B adj 12.2 cm (hyp) tan 35o = opp 7 cm (opp) adj 0.700 = 7 cm 35o 90o adj A C (adj)
57
Step 3. Find the missing side AC
tan θ = opp B adj 12.2 cm (hyp) tan 35o = opp 7 cm (opp) adj 0.700 = 7 cm 35o 90o adj A C (adj) 0.700 (adj) = 7 cm
58
Step 3. Find the missing side AC
tan θ = opp B adj 12.2 cm (hyp) tan 35o = opp 7 cm (opp) adj 0.700 = 7 cm 35o 90o adj A C (adj) 0.700 (adj) = 7 cm
59
Step 3. Find the missing side AC
tan θ = opp B adj 12.2 cm (hyp) tan 35o = opp 7 cm (opp) adj 0.700 = 7 cm 35o 90o adj A C 10 cm (adj) 0.700 (adj) = 7 cm adj = 10 cm
60
Step 4. Find the missing angle B
12.2 cm (hyp) 7 cm (opp) 35o 90o A C 10 cm (adj)
61
Step 4. Find the missing angle B
180o = A + B + C B 12.2 cm (hyp) 7 cm (opp) 35o 90o A C 10 cm (adj)
62
Step 4. Find the missing angle B
180o = A + B + C B 180o = 35o + B + 90o 12.2 cm (hyp) 7 cm (opp) 35o 90o A C 10 cm (adj)
63
Step 4. Find the missing angle B
180o = A + B + C B 180o = 35o + B + 90o 12.2 cm (hyp) 180o = B + 125o 7 cm (opp) 35o 90o A C 10 cm (adj)
64
Step 4. Find the missing angle B
180o = A + B + C B 180o = 35o + B + 90o 12.2 cm (hyp) 180o = B + 125o 7 cm (opp) B = 180o – 125o 35o 90o A C 10 cm (adj)
65
Step 4. Find the missing angle B
180o = A + B + C B 180o = 35o + B + 90o 12.2 cm (hyp) 55o 180o = B + 125o 7 cm (opp) B = 180o – 125o 35o 90o B = 55o A C 10 cm (adj)
66
Steps to completing a right triangle
Step 1. List the information given, and what is needed Step 2. Find the missing side(s) Step 3. Find the missing angle(s)
67
Find the length of the missing side and angles
25 cm 19 cm 30o B C
68
Step 1. List the missing information, and what is needed
What we know: mAB = 25 cm mAC = 19 cm B = 30o A 25 cm 19 cm What we need: mBC = ? A = ? C = ? 30o B C
69
Step 2. Create a 90o angle by cutting the triangle in two
Start at the top angle and continue until it hits the bottom of the triangle at a 90o angle 25 cm 19 cm 30o B H C
70
Step 2. Create a 90o angle by cutting the triangle in two
Name the point of intersection H A 25 cm 19 cm 30o B H C
71
Step 2. Create a 90o angle by cutting the triangle in two
Name the point of intersection H A 25 cm 19 cm Now find the missing information for each new triangle! 30o B H C
72
Step 3. Find the length BH Look at the new triangle from B:
mBH = adjacent mAB = hypotenuse A 25 cm 19 cm 30o B H C
73
Step 3. Find the length BH ? = adj hyp
Look at the new triangle from B: mBH = adjacent mAB = hypotenuse A 25 cm 19 cm ? = adj hyp 30o B H C
74
Step 3. Find the length BH cos θ = adj hyp
Look at the new triangle from B: mBH = adjacent mAB = hypotenuse A 25 cm 19 cm cos θ = adj hyp 30o B H C
75
Step 3. Find the length BH cos θ = adj hyp cos 30o = adj hyp A 25 cm
76
Step 3. Find the length BH cos θ = adj hyp cos 30o = adj hyp
25 cm 19 cm hyp 0.866 = adj 25 cm 30o B H C
77
Step 3. Find the length BH cos θ = adj hyp cos 30o = adj hyp
25 cm 19 cm hyp 0.866 = adj 25 cm 30o B H C
78
Step 3. Find the length BH cos θ = adj hyp cos 30o = adj hyp
25 cm 19 cm hyp 0.866 = adj 25 cm 30o (0.866)(25 cm) = adj B H C
79
Step 3. Find the length BH cos θ = adj hyp cos 30o = adj hyp
25 cm 19 cm hyp 0.866 = adj 25 cm 30o (0.866)(25 cm) = adj B 21.7 cm H C adj = 21.7 cm
80
Step 4. Find the angle A 180o = A + B + H A 25 cm 19 cm 30o B H C
81
Step 4. Find the angle A 180o = A + B + H 180o = A + 30o + 90o A 25 cm
82
Step 4. Find the angle A 180o = A + B + H 180o = A + 30o + 90o
25 cm 19 cm 30o B 21.7 cm H C
83
Step 4. Find the angle A 180o = A + B + H 180o = A + 30o + 90o
25 cm 19 cm A = 180o – 120o 30o B 21.7 cm H C
84
Step 4. Find the angle A 180o = A + B + H 180o = A + 30o + 90o
25 cm 19 cm A = 180o – 120o A = 60o 30o B 21.7 cm H C
85
Step 5. Find the length AH There are many different ways to find mAH:
– Pythagoras – tan A or tan B – cos A – sin B A 60o 25 cm 19 cm 30o B 21.7 cm H C
86
Step 5. Find the length AH sin θ = opp hyp A 60o 25 cm 19 cm 30o B H C
87
Step 5. Find the length AH sin θ = opp hyp sin 30o = opp hyp A 60o
25 cm 19 cm hyp 30o B 21.7 cm H C
88
Step 5. Find the length AH sin θ = opp hyp sin 30o = opp hyp
25 cm 19 cm hyp 0.500 = opp 25 cm 30o B 21.7 cm H C
89
Step 5. Find the length AH sin θ = opp hyp sin 30o = opp hyp
25 cm 19 cm hyp 0.500 = opp 25 cm 30o B 21.7 cm H C
90
Step 5. Find the length AH sin θ = opp hyp sin 30o = opp hyp
25 cm 19 cm hyp 0.500 = opp 25 cm 30o (0.500)(25) = opp B 21.7 cm H C
91
Step 5. Find the length AH sin θ = opp hyp sin 30o = opp hyp
25 cm 19 cm hyp 12.5 cm 0.500 = opp 25 cm 30o (0.500)(25) = opp B 21.7 cm H C hyp = 12.5 cm
92
Step 6. Find the angle C ? = opp hyp Look at the new triangle from C:
mAH = opposite mAC = hypotenuse A 60o 25 cm 19 cm 12.5 cm ? = opp hyp 30o B 21.7 cm H C
93
Step 6. Find the angle C sin θ = opp hyp
Look at the new triangle from C: mAH = opposite mAC = hypotenuse A 60o 25 cm 19 cm 12.5 cm sin θ = opp hyp 30o B 21.7 cm H C
94
Step 6. Find the angle C sin θ = opp hyp A 60o 25 cm 19 cm 30o B H C
12.5 cm 30o B 21.7 cm H C
95
Step 6. Find the angle C sin θ = opp hyp sin θ = opp hyp A 60o 25 cm
12.5 cm 30o B 21.7 cm H C
96
Step 6. Find the angle C sin θ = opp hyp sin θ = opp hyp
25 cm 19 cm sin θ = 12.5 cm 12.5 cm 19 cm 30o B 21.7 cm H C
97
Step 6. Find the angle C sin θ = opp hyp sin θ = opp hyp
25 cm 19 cm sin θ = 12.5 cm 12.5 cm 19 cm sin θ = 0.66 30o B 21.7 cm H C
98
Step 6. Find the angle C sin θ = opp hyp sin θ = opp hyp
25 cm 19 cm sin θ = 12.5 cm 12.5 cm 19 cm sin θ = 0.66 30o sin-1(0.66) = θ B 21.7 cm H C
99
Step 6. Find the angle C sin θ = opp hyp sin θ = opp hyp
25 cm 19 cm sin θ = 12.5 cm 12.5 cm 19 cm sin θ = 0.66 30o 41.1o sin-1(0.66) = θ B 21.7 cm H C θ = 41.1o
100
Step 7. Find the length CH There are many different ways to find mCH:
– Pythagoras – cos C – tan C A 60o 25 cm 19 cm 12.5 cm 30o 41.1o B 21.7 cm H C
101
Step 7. Find the length CH cos θ = adj hyp A 60o 25 cm 19 cm 30o B H C
12.5 cm 30o 41.1o B 21.7 cm H C
102
Step 7. Find the length CH cos θ = adj hyp cos 41.1o = adj hyp A 60o
25 cm 19 cm 12.5 cm 30o 41.1o B 21.7 cm H C
103
Step 7. Find the length CH cos θ = adj hyp cos 41.1o = adj hyp
25 cm 19 cm 12.5 cm 0.754 = adj 19 cm 30o 41.1o B 21.7 cm H C
104
Step 7. Find the length CH cos θ = adj hyp cos 41.1o = adj hyp
25 cm 19 cm 12.5 cm 0.754 = adj 19 cm 30o 41.1o B 21.7 cm H C
105
Step 7. Find the length CH cos θ = adj hyp cos 41.1o = adj hyp
25 cm 19 cm 12.5 cm 0.754 = adj 19 cm 30o 41.1o 0.754 (19 cm) = adj B 21.7 cm H C
106
Step 7. Find the length CH cos θ = adj hyp cos 41.1o = adj hyp
25 cm 19 cm 12.5 cm 0.754 = adj 19 cm 30o 41.1o 0.754 (19 cm) = adj B 21.7 cm H 14.3 cm C adj = 14.3 cm
107
Step 8. Find the angle A 180o = A + C + H A 60o 25 cm 19 cm 30o B H C
12.5 cm 30o 41.1o B 21.7 cm H 14.3 cm C
108
Step 8. Find the angle A 180o = A + C + H 180o = A + 41.1o + 90o A 60o
25 cm 19 cm 12.5 cm 30o 41.1o B 21.7 cm H 14.3 cm C
109
Step 8. Find the angle A 180o = A + C + H 180o = A + 41.1o + 90o
25 cm 19 cm 12.5 cm 30o 41.1o B 21.7 cm H 14.3 cm C
110
Step 8. Find the angle A 180o = A + C + H 180o = A + 41.1o + 90o
25 cm 19 cm A = 180o – 131.1o 12.5 cm 30o 41.1o B 21.7 cm H 14.3 cm C
111
Step 8. Find the angle A 180o = A + C + H 180o = A + 41.1o + 90o
25 cm 19 cm A = 180o – 131.1o 12.5 cm A = 48.9o 30o 41.1o B 21.7 cm H 14.3 cm C
112
Step 9. Complete triangle
180o = A + B + C A = 60o o A = 108.9o 48.9o 60o 25 cm 19 cm 12.5 cm 30o 41.1o B 21.7 cm H 14.3 cm C
113
Step 9. Complete triangle
180o = A + B + C A = 60o o A = 108.9o 108.9o 180o = 108.9o + 30o o 25 cm 19 cm 30o 41.1o B 21.7 cm H 14.3 cm C
114
Step 9. Complete triangle
180o = A + B + C A = 60o o A = 108.9o 108.9o 180o = 108.9o + 30o o 25 cm 19 cm The angles in the original triangle ABC add up to 180o 30o 41.1o B 21.7 cm H 14.3 cm C
115
Step 9. Complete triangle
mBC = mBH + mCH A 108.9o 25 cm 19 cm 30o 41.1o B 21.7 cm H 14.3 cm C
116
Step 9. Complete triangle
mBC = mBH + mCH A 108.9o mBC = 25 cm 19 cm 30o 41.1o B 21.7 cm H 14.3 cm C
117
Step 9. Complete triangle
mBC = mBH + mCH A 108.9o mBC = mBC = 36 cm 25 cm 19 cm 30o 41.1o B 36 cm C
118
Steps to complete a non-right angle triangle
Step 1. List the missing information, and what is needed Step 2. Create 90o angles by cutting the triangle in two Step 3. Looking at the first triangle, solve for missing angle(s) and/or side(s) Step 4. Looking at the second triangle, solve for missing angle(s) and/or side(s) Step 5. Put the halves of sides and angles together into the one original triangle
119
So far, there are two ways to solve a right-angled triangle:
120
So far, there are two ways to solve a right-angled triangle:
Pythagoras (c2 = a2 + b2) Trigonometric ratios (SOH CAH TOA)
121
Isn’t there another way to solve a non-right angled triangle?
122
Isn’t there another way to solve a non-right angled triangle?
Yes! Sin Law and Cos Law
123
Sine Law Uses the sine ratio
124
Sine Law a = b = c sin A sin B sin C
125
Sine Law lengths a = b = c sin A sin B sin C angles
126
Find the length of the missing side and angles
25 cm 19 cm 30o B C
127
Find the length of the missing side and angles
Remember: Capital letters = angles Lower-case letters = sides A c b 25 cm 19 cm 30o B a C
128
Find the length of the missing side and angles
angle A ↔ side a Remember: Capital letters = angles Lower-case letters = sides A c b 25 cm 19 cm Angles and sides with the same letters are opposite each other 30o B a C
129
Find the length of the missing side and angles
angle B ↔ side b Remember: Capital letters = angles Lower-case letters = sides A c b 25 cm 19 cm Angles and sides with the same letters are opposite each other 30o B a C
130
Find the length of the missing side and angles
angle C ↔ side c Remember: Capital letters = angles Lower-case letters = sides A c b 25 cm 19 cm Angles and sides with the same letters are opposite each other 30o B a C
131
Step 1. List the missing information, and what is needed
What we know: mAB = c = 25 cm mAC = b = 19 cm B = 30o A c b 25 cm 19 cm What we need: mBC = a = ? A = ? C = ? 30o B a C
132
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
We have both angle B and side b A c b 25 cm 19 cm We can use these to fill out the C ‘pair’ 30o B a C
133
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A c b 25 cm 19 cm 30o B a C
134
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 25 cm 19 cm 30o B a C
135
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 25 cm 19 cm 30o B a C
136
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 19 (sin C) = sin 30o (25) 25 cm 19 cm 30o B a C
137
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 19 (sin C) = sin 30o (25) 25 cm 19 cm 19 (sin C) = (0.5)(25) 30o B a C
138
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 19 (sin C) = sin 30o (25) 25 cm 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 30o B a C
139
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 19 (sin C) = sin 30o (25) 25 cm 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 30o B a C
140
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 19 (sin C) = sin 30o (25) 25 cm 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 30o sin C = 0.658 B a C
141
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 19 (sin C) = sin 30o (25) 25 cm 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 30o sin C = 0.658 B a C sin-1 (0.658) = C
142
Step 2. Find one ‘pair’, and use it to fill in another ‘pair’
b = c a = b = c sin B sin C sin A sin B sin C A 19 cm = 25 cm sin 30o sin C c b 19 (sin C) = sin 30o (25) 25 cm 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 30o 41.1o sin C = 0.658 B a C sin-1 (0.658) = C C = 41.1o
143
Step 3. Find the last angle (A)
180o = A + B + C A c b 25 cm 19 cm 30o 41.1o B a C
144
Step 3. Find the last angle (A)
180o = A + B + C A 180o = A + 30o o c b 25 cm 19 cm 30o 41.1o B a C
145
Step 3. Find the last angle (A)
180o = A + B + C A 180o = A + 30o o c b 180o = A o 25 cm 19 cm 30o 41.1o B a C
146
Step 3. Find the last angle (A)
180o = A + B + C A 180o = A + 30o o c b 180o = A o 25 cm 19 cm 180o – 71.1o = A 30o 41.1o B a C
147
Step 3. Find the last angle (A)
180o = A + B + C A 108.9o 180o = A + 30o o c b 180o = A o 25 cm 19 cm 180o – 71.1o = A A = 108.9o 30o 41.1o B a C
148
Step 4. Find the last ‘pair’ (A)
a = b = c sin A sin B sin C A 108.9o c b 25 cm 19 cm 30o 41.1o B a C
149
Step 4. Find the last ‘pair’ (A)
a = b = c a = b sin A sin B sin C sin A sin B A 108.9o c b 25 cm 19 cm 30o 41.1o B a C
150
Step 4. Find the last ‘pair’ (A)
a = b = c a = b sin A sin B sin C sin A sin B A a = 19 cm 108.9o sin 108.9o sin 30o c b 25 cm 19 cm 30o 41.1o B a C
151
Step 4. Find the last ‘pair’ (A)
a = b = c a = b sin A sin B sin C sin A sin B A a = 19 cm 108.9o sin 108.9o sin 30o c b a = 19 cm 25 cm 19 cm 30o 41.1o B a C
152
Step 4. Find the last ‘pair’ (A)
a = b = c a = b sin A sin B sin C sin A sin B A a = 19 cm 108.9o sin 108.9o sin 30o c b a = 19 cm 25 cm 19 cm 30o 41.1o B a C
153
Step 4. Find the last ‘pair’ (A)
a = b = c a = b sin A sin B sin C sin A sin B A a = 19 cm 108.9o sin 108.9o sin 30o c b a = 19 cm 25 cm 19 cm a (0.5) = (19) 30o 41.1o B a C
154
Step 4. Find the last ‘pair’ (A)
a = b = c a = b sin A sin B sin C sin A sin B A a = 19 cm 108.9o sin 108.9o sin 30o c b a = 19 cm 25 cm 19 cm a (0.5) = (19) a (0.5) = 17.97 30o 41.1o B a C
155
Step 4. Find the last ‘pair’ (A)
a = b = c a = b sin A sin B sin C sin A sin B A a = 19 cm 108.9o sin 108.9o sin 30o c b a = 19 cm 25 cm 19 cm a (0.5) = (19) a (0.5) = 17.97 30o 41.1o B a C
156
Step 4. Find the last ‘pair’ (A)
a = b = c a = b sin A sin B sin C sin A sin B A a = 19 cm 108.9o sin 108.9o sin 30o c b a = 19 cm 25 cm 19 cm a (0.5) = (19) a (0.5) = 17.97 30o 41.1o B a C a = 36 cm 36 cm
157
Done! A 108.9o c b 25 cm 19 cm 30o 41.1o B a C 36 cm
158
Steps to complete a triangle using Sine Law
Step 1. List the missing information, and what is needed Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ Step 3. Find the last angle Step 4. Find the last ‘pair’
159
Uses the cos ratio Also uses ‘pairs’
Cos Law Uses the cos ratio Also uses ‘pairs’
160
pair you’re looking for
Looking for a Cos Law other two lengths a2 = b2 + c2 – 2bc(cosA) pair you’re looking for
161
pair you’re looking for
Looking for b Cos Law other two lengths b2 = a2 + c2 – 2ac(cosB) pair you’re looking for
162
pair you’re looking for
Looking for c Cos Law other two lengths c2 = b2 + a2 – 2ab(cosC) pair you’re looking for
163
3 variations of Cos Law a2 = b2 + c2 – 2bc(cosA)
b2 = a2 + c2 – 2ac(cosB) c2 = b2 + c2 – 2ab(cosC)
164
Find the length of b A c b 25 cm 30o B C a 36 cm
165
Find the length of b To use Cos Law, you have to know:
- One of the values of the pair you need (angle or length) - The two other lengths c b 25 cm 30o B C a 36 cm
166
Step 1. List the missing information, and what is needed
What we know: mAB = c = 25 cm mBC = a = 36 cm B = 30o A c b 25 cm What we need: mAC = b = ? 30o B C a 36 cm
167
Step 2. Choose the variation of Cos Law that you need
a2 = b2 + c2 – 2bc(cosA) A b2 = a2 + c2 – 2ac(cosB) c c2 = b2 + c2 – 2ab(cosC) b 25 cm 30o B C a 36 cm
168
Step 2. Choose the variation of Cos Law that you need
a2 = b2 + c2 – 2bc(cosA) A b2 = a2 + c2 – 2ac(cosB) c c2 = b2 + c2 – 2ab(cosC) b 25 cm 30o B C a 36 cm
169
Step 3. Solve the equation
b2 = a2 + c2 – 2ac(cosB)
170
Step 3. Solve the equation
b2 = a2 + c2 – 2ac(cosB) b2 = – 2(36)(25)(cos30o)
171
Step 3. Solve the equation
b2 = a2 + c2 – 2ac(cosB) b2 = – 2(36)(25)(cos30o) b2 = – 2(36)(25)(0.866)
172
Step 3. Solve the equation
b2 = a2 + c2 – 2ac(cosB) b2 = – 2(36)(25)(cos30o) b2 = – 2(36)(25)(0.866) b2 = – 2(36)(25)(0.866)
173
Step 3. Solve the equation
b2 = a2 + c2 – 2ac(cosB) b2 = – 2(36)(25)(cos30o) b2 = – 2(36)(25)(0.866) b2 = – 2(36)(25)(0.866) b2 = –
174
Step 3. Solve the equation
b2 = a2 + c2 – 2ac(cosB) b2 = – 2(36)(25)(cos30o) b2 = – 2(36)(25)(0.866) b2 = – 2(36)(25)(0.866) b2 = – b2 =
175
Step 3. Solve the equation
b2 = a2 + c2 – 2ac(cosB) b2 = – 2(36)(25)(cos30o) b2 = – 2(36)(25)(0.866) b2 = – 2(36)(25)(0.866) b2 = – b2 =
176
Step 3. Solve the equation
b2 = a2 + c2 – 2ac(cosB) b2 = – 2(36)(25)(cos30o) b2 = – 2(36)(25)(0.866) b2 = – 2(36)(25)(0.866) b2 = – b2 = b = 19 cm
177
Done! A c b 25 cm 19 cm 30o B a C 36 cm
178
Steps to complete triangles using Cos Law
Step 1. List the missing information, and what is needed Step 2. Choose the variation of Cos Law that you need Step 3. Solve the equation
179
How do you know which to use?
Use Sin Law if: Use Cos Law if: Given 2 sides, 1 angle opposite one of the sides Given 2 angles, 1 side opposite one of the angles Given 3 sides Given 1 angle, 2 sides adjacent to that angle a a c A b b B c a C C b
180
Summary of trigonometry
Right-angled triangle Non-right angled triangle If you only have sides --Pythagoras If you have sides and angles SOH CAH TOA If you have a pair (a + A) Sin Law If you have to fill in a pair (looking for angle or side) Cos Law a2 = b2 + c2 – 2ac(cos A)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.