Presentation is loading. Please wait.

Presentation is loading. Please wait.

7.4 - The Primary Trigonometric Ratios

Similar presentations


Presentation on theme: "7.4 - The Primary Trigonometric Ratios"β€” Presentation transcript:

1 7.4 - The Primary Trigonometric Ratios
Determine the values of the tangent, sine and cosine ratios for Angle A and Angle B to four decimal places. A For Angle A (67o), Opposite = a Adjacent = b Hypotenuse = c c 67o b 23o B a C sin(67o) = π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ = π‘Ž 𝑐 =𝟎.πŸ—πŸπŸŽπŸ“ cos(67o) = π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ = 𝑏 𝑐 =𝟎.πŸ‘πŸ—πŸŽπŸ• tan(67o) = π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ = π‘Ž 𝑏 =𝟐.πŸ‘πŸ“πŸ“πŸ— SOH-CAH-TOA

2 Example #2 Determine the measure of πœƒ to the nearest degree, using the sine primary trigonometric ratio. sinπœƒ = π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ = πœƒ= sin βˆ’ πœƒβ‰… 21.8o β‰… 22o 5.39 cm 2.00 cm πœƒ x

3 In Summary… The primary trigonometric ratios for Angle A are sin A, cos A and tan A If angle A is one of the acute angles in a right triangle, the primary trigonometric ratios can be determined using the the ratios of the sides Using the Pythagorean Theorem, opposite2 + adjacent2 = hypotenuse2 in any right triangle


Download ppt "7.4 - The Primary Trigonometric Ratios"

Similar presentations


Ads by Google