Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fluid flow in an open channel

Similar presentations


Presentation on theme: "Fluid flow in an open channel"β€” Presentation transcript:

1 Fluid flow in an open channel
…or, a tutorial on simplifying impossible equations…

2 What do we know already? Continuity 𝑄= 𝑉 β„Žπ‘€ and 𝑄 1 = 𝑄 2 on a reach
Flow resistance, e.g., 𝑉 = 1 𝑛 β„Ž 2/3 𝑆 1/2 or 𝑉 = 8𝑔 𝑓 𝑅𝑆 Often assume steady & uniform flow, but natural channels don’t behave that way, so…

3 3D equations of motion microscopic balance
πœ• 𝑒 π‘₯ πœ•π‘₯ + πœ• 𝑒 𝑦 πœ•π‘¦ + πœ• 𝑒 𝑧 πœ•π‘§ =0 πœ• 𝑒 π‘₯ πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 π‘₯ πœ•π‘₯ + 𝑒 𝑦 πœ• 𝑒 π‘₯ πœ•π‘¦ + 𝑒 𝑧 πœ• 𝑒 π‘₯ πœ•π‘§ = 𝑔 π‘₯ βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘₯ + 1 𝜌 π‘š πœ• 𝜏 π‘₯π‘₯ πœ•π‘₯ + πœ• 𝜏 π‘₯𝑦 πœ•π‘¦ + πœ• 𝜏 π‘₯𝑧 πœ•π‘§ πœ• 𝑒 𝑦 πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 𝑦 πœ•π‘₯ + 𝑒 𝑦 πœ• 𝑒 𝑦 πœ•π‘¦ + 𝑒 𝑧 πœ• 𝑒 𝑦 πœ•π‘§ = 𝑔 𝑦 βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘¦ + 1 𝜌 π‘š πœ• 𝜏 π‘₯𝑦 πœ•π‘₯ + πœ• 𝜏 𝑦𝑦 πœ•π‘¦ + πœ• 𝜏 𝑧𝑦 πœ•π‘§ πœ• 𝑒 𝑧 πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 𝑧 πœ•π‘₯ + 𝑒 𝑦 πœ• 𝑒 𝑧 πœ•π‘¦ + 𝑒 𝑧 πœ• 𝑒 𝑧 πœ•π‘§ = 𝑔 𝑧 βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘§ + 1 𝜌 π‘š πœ• 𝜏 𝑧π‘₯ πœ•π‘₯ + πœ• 𝜏 𝑧𝑦 πœ•π‘¦ + πœ• 𝜏 𝑧𝑧 πœ•π‘§

4 Simplifying assumption 1: motion limited to x-direction (defined as downstream)
πœ• 𝑒 π‘₯ πœ•π‘₯ + πœ• 𝑒 𝑦 πœ•π‘¦ + πœ• 𝑒 𝑧 πœ•π‘§ =0 πœ• 𝑒 π‘₯ πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 π‘₯ πœ•π‘₯ + 𝑒 𝑦 πœ• 𝑒 π‘₯ πœ•π‘¦ + 𝑒 𝑧 πœ• 𝑒 π‘₯ πœ•π‘§ = 𝑔 π‘₯ βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘₯ + 1 𝜌 π‘š πœ• 𝜏 π‘₯π‘₯ πœ•π‘₯ + πœ• 𝜏 π‘₯𝑦 πœ•π‘¦ + πœ• 𝜏 π‘₯𝑧 πœ•π‘§ πœ• 𝑒 𝑦 πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 𝑦 πœ•π‘₯ + 𝑒 𝑦 πœ• 𝑒 𝑦 πœ•π‘¦ + 𝑒 𝑧 πœ• 𝑒 𝑦 πœ•π‘§ = 𝑔 𝑦 βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘¦ + 1 𝜌 π‘š πœ• 𝜏 π‘₯𝑦 πœ•π‘₯ + πœ• 𝜏 𝑦𝑦 πœ•π‘¦ + πœ• 𝜏 𝑧𝑦 πœ•π‘§ πœ• 𝑒 𝑧 πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 𝑧 πœ•π‘₯ + 𝑒 𝑦 πœ• 𝑒 𝑧 πœ•π‘¦ + 𝑒 𝑧 πœ• 𝑒 𝑧 πœ•π‘§ = 𝑔 𝑧 βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘§ + 1 𝜌 π‘š πœ• 𝜏 𝑧π‘₯ πœ•π‘₯ + πœ• 𝜏 𝑧𝑦 πœ•π‘¦ + πœ• 𝜏 𝑧𝑧 πœ•π‘§

5 1D equations of motion --Mass conservation considered separately-- πœ• 𝑒 π‘₯ πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 π‘₯ πœ•π‘₯ + 𝑒 𝑦 πœ• 𝑒 π‘₯ πœ•π‘¦ + 𝑒 𝑧 πœ• 𝑒 π‘₯ πœ•π‘§ = 𝑔 π‘₯ βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘₯ + 1 𝜌 π‘š πœ• 𝜏 π‘₯π‘₯ πœ•π‘₯ + πœ• 𝜏 π‘₯𝑦 πœ•π‘¦ + πœ• 𝜏 π‘₯𝑧 πœ•π‘§

6 Simplifying assumption 2: drag from bed >> drag from banks, no stretching
πœ• 𝑒 π‘₯ πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 π‘₯ πœ•π‘₯ = 𝑔 π‘₯ βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘₯ + 1 𝜌 π‘š πœ• 𝜏 π‘₯π‘₯ πœ•π‘₯ + πœ• 𝜏 π‘₯𝑦 πœ•π‘¦ + πœ• 𝜏 π‘₯𝑧 πœ•π‘§ Q: when might this assumption not be true?

7 Simplifying assumption 3: x-component of gravity scales with bed slope, = 𝑔 sin πœƒ ≃𝑔 𝑆 0
πœ• 𝑒 π‘₯ πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 π‘₯ πœ•π‘₯ =𝑔 𝑆 0 βˆ’ 1 𝜌 π‘š πœ•π‘ πœ•π‘₯ + 1 𝜌 π‘š πœ• 𝜏 π‘₯𝑧 πœ•π‘§

8 Simplifying assumption 4: pressure at a point along x is hydrostatic, 𝑝≃ βˆ’πœŒ π‘š 𝑔(β„Žβˆ’π‘§)
πœ• 𝑒 π‘₯ πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 π‘₯ πœ•π‘₯ =𝑔 𝑆 0 βˆ’π‘” πœ•β„Ž πœ•π‘₯ + 1 𝜌 π‘š πœ• 𝜏 π‘₯𝑧 πœ•π‘§

9 Simplifying assumption 5: bed shear stress is approximately 𝜏 𝑧π‘₯ ≃ 𝜏 0 ≃ βˆ’πœŒ π‘š 𝑔 β„Žβˆ’π‘§ 𝑆 𝑓
πœ• 𝑒 π‘₯ πœ•π‘‘ + 𝑒 π‘₯ πœ• 𝑒 π‘₯ πœ•π‘₯ =𝑔 𝑆 0 βˆ’π‘” πœ•β„Ž πœ•π‘₯ βˆ’π‘” 𝑆 𝑓 Note: friction slope 𝑆 𝑓 is a new parameter that accounts for deviations from steady, uniform flow!

10 Simplifying assumption 6: replace point velocity 𝑒 π‘₯ with mean velocity 𝑉
πœ•π‘‰ πœ•π‘‘ +𝑉 πœ•π‘‰ πœ•π‘₯ =𝑔 𝑆 0 βˆ’π‘” πœ•β„Ž πœ•π‘₯ βˆ’ 𝑔𝑆 𝑓 Final Equation!

11 Resulting expression: meaning of terms
πœ•π‘‰ πœ•π‘‘ +𝑉 πœ•π‘‰ πœ•π‘₯ =𝑔 𝑆 0 βˆ’π‘” πœ•β„Ž πœ•π‘₯ βˆ’ 𝑔𝑆 𝑓 grav. driving stress time change in 𝑉 downstream change in 𝑉 downstream pressure grad. new term from momentum bal. Achtung! friction slope 𝑆 𝑓 is different from 𝑆 0 if either term on the left-hand side is nonzero.

12 OFFICIALLY: the Saint-Venant equation A 1D, simplified momentum balance for open channel flow
Note: Actual water surface follows the hydraulic grade line (HGL), but the flow momentum distribution follows the ENERGY GRADE LINE (EGL)

13 Saint-Venant equation Interpretation
𝑆 𝑓 β‰… 𝑆 0 βˆ’ πœ•β„Ž πœ•π‘₯ βˆ’ 1 𝑔 πœ•π‘‰ πœ•π‘‘ βˆ’ 𝑉 𝑔 πœ•π‘‰ πœ•π‘₯ Interpretation: In cases of uniform, steady flow, 𝑆 𝑓 ≃ 𝑆 0 . Where flow is non-uniform (i.e., natural streams), the 1DSV contains corrections for downstream changes in depth and velocity

14 Reach-scale flow dynamics
𝑆 𝑓 β‰… 𝑆 0 βˆ’ πœ•β„Ž πœ•π‘₯ βˆ’ 1 𝑔 πœ•π‘‰ πœ•π‘‘ βˆ’ 𝑉 𝑔 πœ•π‘‰ πœ•π‘₯ Dependent variables are mean stream-wise velocity 𝑉 and mean (for a cross-section) flow depth β„Ž, independent variables are π‘₯ and 𝑑. Finally, a solvable system of equations requires a flow resistance equation (e.g., Manning, Chezy, DW) and mass conservation. In macroscopic form: πœ•π‘„ πœ•π‘₯ + πœ•π΄ πœ•π‘‘ βˆ’πΌ=0, 𝑄=𝑉𝐴=π‘‰π‘€β„Ž=𝛼𝑀 β„Ž 𝑏 Here, 𝐼 is any external input (-ve for outflow) and 𝛼 is the function of the slope ( 𝑆 𝑓 ) and roughness from the flow resistance equation. For Manning’s equation, 𝑄= 1 𝑛 π‘€β„Ž 5/3 𝑆 𝑓 1/2 , so 𝛼= 𝑆 𝑓 1/2 /𝑛 and 𝑏=5/3.


Download ppt "Fluid flow in an open channel"

Similar presentations


Ads by Google