Download presentation
Presentation is loading. Please wait.
1
Weighted counting of k-matchings is #W[1]-hard
Markus Blรคser, Radu Curticapean Saarland University, Computational Complexity Group
2
counting (perfect) matchings
since 1976 and counting. biadjacency matrix ๐ด of bipartite ๐บ ๐๐๐๐ ๐ด =#๐๐๐๐๐๐๐ก๐โ(๐บ) ๐
๐๐ ๐จ = ๐โ ๐ ๐ ๐ ๐๐ ๐ 1โค๐โค๐ ๐ ๐,๐ ๐ ๐๐๐๐ ๐จ = ๐โ ๐ ๐ 1โค๐โค๐ ๐ ๐,๐ ๐ considered intractable poly-time computable 1967 #Planar-PerfMatch โค ๐ ๐๐๐ก (Fisher, Kasteleyn) 1976 definition of #๐ท, hardness of ๐๐๐๐ (Valiant) 1989 FPRAS for permanent (Jerrum, Sinclair) 2004 parameterized counting complexity (Flum, Grohe) 2007 #Match on planar G of ฮ=3 is #P-hard. (Xia et al.)
3
parameterized counting
parameterized problems input (๐ฅ,๐) with parameter ๐ typically solvable in time ๐ ๐ถ(๐) or time ๐(๐)๐ ๐ถ(๐) count ๐-vertex covers: ๐(๐ ๐ )โ ๐(2 ๐ ๐) โโฆ count ๐-cliques: ๐ ๐ ๐ โ๐( ๐ ๐ 3 ๐ ) โ๐ญ๐ท๐ป? define class #W[1] as closure of ๐โ#๐ถ๐๐๐๐ข๐๐ underโฆ fpt-turing reduction ๐จ โค ๐๐๐ ๐ป ๐ฉ: solves ๐ด(๐ฅ,๐) in time ๐ ๐ ๐ ๐(1) with oracle for ๐ต queries B(๐ฅโฒ,๐โฒ) have ๐ โฒ โค๐(๐) ๐๐ ๐
๐๐
4
โsimpleโ substructure
known results โsimpleโ graph โsimpleโ substructure in: graph ๐บ, ๐โโ par: ๐ out: #VertexCover s ๐ ๐บ for MSOL formula ๐(๐) in: graph ๐บ par: treewidth ๐ฎ , out: #sets ๐ with (๐บ,๐)โจ๐ ๐โClique ๐โ#Clique ๐โCycle ๐โ#Cycle ๐โPath ๐โ#Path in: graph ๐บ par: genus(๐ฎ) out: #๐๐(๐บ) ๐โMatch ๐โ#Match
5
our result status of ๐โ#๐๐๐ก๐โ? ๐โ#๐๐๐๐ก๐โ is #๐ 1 -hard.
โhardness of permanentโ in fpt-world also: ๐โ๐๐๐ก๐โโ๐ in: edge-weighted bipartite G, ๐โโ out: ๐โ๐๐๐ก๐ โ ๐ [๐บ] ๐โ๐ ๐ค(๐) ๐โ#๐๐๐๐ก๐โ is #๐ 1 -hard. proof by series of reductions
6
partial path-cycle covers
k-partial cycle cover { C 1 ,โฆ, C t } of cycles vertex-disjoint k edges in total k-partial path-cycle cover { C 1 ,โฆ, C t } of paths and cycles โฆ ๐ ๐ [๐บ] ๐ซ๐ ๐ [๐บ]
7
๐ ๐ reduction chain ๐โ#๐ค๐๐๐ก๐โ ๐โ#๐ค๐๐ถ๐ถ ๐โ#๐ถ๐ถ
in: weighted bipartite G, ๐โโ out: ๐โ โณ ๐ [๐บ] ๐โ๐ ๐ค(๐) ๐โ#๐ค๐๐ถ๐ถ in: weighted digraph G, ๐โโ out: ๐ถโ ๐ซ๐ ๐ [๐บ] ๐โ๐ถ ๐ค(๐) ๐โ#๐ถ๐ถ in: digraph G, ๐โโ out: #๐โpartial cycle covers of ๐บ
8
matchings โฅ ๐๐๐ ๐ป path-cycle covers
standard reduction G S(G) split in out (๐ข,๐ฃ) { ๐ข ๐๐ข๐ก , ๐ฃ ๐๐ } ๐ ๐ ๐ ๐ฎ โ
๐ ๐ ๐บ ๐ฎ implies ๐ถโ๐ซ๐ ๐บ ๐โ๐ถ ๐ค(๐) = ๐โโณ ๐บ ๐โ๐ ๐ค(๐)
9
๐ ๐ reduction chain ๐โ#๐ค๐๐๐ก๐โ ๐โ#๐ค๐๐ถ๐ถ ๐โ#๐ถ๐ถ
in: weighted bipartite G, ๐โโ out: ๐โ โณ ๐ [๐บ] ๐โ๐ ๐ค(๐) ๐โ#๐ค๐๐ถ๐ถ in: weighted digraph G, ๐โโ out: ๐ถโ ๐ซ๐ ๐ [๐บ] ๐โ๐ถ ๐ค(๐) ๐โ#๐ถ๐ถ in: digraph G, ๐โโ out: #๐โpartial cycle covers of ๐บ
10
path-cycle covers โฅ ๐๐๐ ๐ป cycle covers
analysis via path-cycle polynomial ๐พ ๐บ;๐ฅ โ ๐ถโ๐ซ๐ ๐บ ๐ฅ ๐ถ ๐ค ๐ถ transform ๐บโฆ ๐บ ๐ by gadgets b -b b -b b -b b -b -b b recipe for path-cycle covers in ๐บ ๐ path-cycle cover ๐ช in ๐บ as core at path ends: add nothing or at isolated vts: add nothing or or b -b b -b ๐พ ๐บ ๐ ;๐ฅ = ๐ถโ๐ซ๐ ๐บ ๐ฅ ๐ถ (1+๐๐ฅ) #๐๐๐กโ ๐ถ (1+๐๐ฅโ๐๐ฅ) #๐๐ ๐๐ ๐ถ interpolation along ๐ allows to track out paths
11
๐ ๐ reduction chain ๐โ#๐ถ๐ถ ๐โ#๐ก๐ฆ๐๐๐ถ๐ ๐โ#๐ถ๐๐๐๐ข๐๐ in: digraph G, ๐โโ
out: #๐โpartial cycle covers of ๐บ ๐โ#๐ก๐ฆ๐๐๐ถ๐ in: digraph G, type ๐, ๐โโ out: #kโUCWs of G with type ๐ ๐โ#๐ถ๐๐๐๐ข๐๐ in: graph G, ๐โโ out: #๐โcliques of ๐บ
12
cycle-like structures
for tuple ๐, let ๐ฎ ๐ โ{cyclic shifts of W} CW ๐=๐ฎ(๐) cycle ๐ถ=๐ฎ(๐) no repeating vts. UCW ๐ 1 ,โฆ, ๐ ๐ก closed walk ๐ฃ 1 , โฆ, ๐ฃ ๐โ1 , ๐ฃ 1
13
types of UCWs ๐ ๐ ๐ฃ โ #visits of ๐ at ๐ฃ
similar to types of cyclic walks defined by Flum, Grohe ๐ ๐ ๐ฃ โ #visits of ๐ at ๐ฃ 2 3 1 type ๐ ๐ = ๐ ๐ ๐ฃ 1 ,โฆ, ๐ ๐ ( ๐ฃ ๐ ) 1 size ๐=8 ๐= 0,1,1,1,2,3 (omitting 0s is fine) 1 size ๐=4 ๐= 0,0,1,1,1,1 size ๐=9000 ๐= 9000
14
typed UCWs โฅ ๐๐๐ ๐ป cliques
proof adapted from Flum, Grohe In G, replace all edges by , and add Want to count induced subgraphs isomorphic to ๐พโ ๐พ ๐ . Consider set ๐ฐ of UCWs of type ๐ ๐,๐ := ๐,โฆ,๐ in G. k Partition ๐ฐ according to visited vertices ๐โ ๐ ๐ . Note: If ๐บ ๐ โ๐บ ๐ โฒ , then โsameโ UCWs in ๐ and ๐โฒ. Partition ๐ฐ according to isomorphism type of ๐บ ๐ , which is some graph ๐ป on ๐ vertices.
15
typed UCWs โฅ ๐๐๐ ๐ป cliques
graph H of order k in host graph G ๐ฝ (๐) โ#UCWs of type ๐ ๐,๐ in ๐บ ๐ฝ ๐ป (๐) โ#UCWs of type ๐ ๐,๐ in ๐ป ๐ฅ ๐ป โ
๐ฝ ๐ป (๐) G ๐ฅ ๐ป โ#copies of ๐ป in ๐บ H ๐ฝ (๐) = ๐ปโ ๐บ๐๐๐โ๐ ๐ ๐ฅ ๐ป โ
๐ฝ ๐ป (๐)
16
typed UCWs โฅ ๐๐๐ ๐ป cliques
๐ฝ (๐) โ#UCWs of type ๐ ๐,๐ in ๐บ oracle call ๐ฝ ๐ป (๐) โ#UCWs of type ๐ ๐,๐ in ๐ป oracle call ๐ฅ ๐ป โ#isomorphic copies of ๐ป in ๐บ ๐ ๐ฒ wanted ๐ฝ ๐ป 1 (1) โฏ ๐ฝ ๐พ (1) โฎ โฑ โฎ ๐ฝ ๐ป 1 (๐) โฏ ๐ฝ ๐พ (๐) ๐ฅ ๐ป 1 โฎ ๐ ๐ฒ = ๐ฝ โฎ ๐ฝ ๐ ๐ฝ (๐) = ๐ปโ ๐บ๐๐๐โ๐ ๐ ๐ฅ ๐ป โ
๐ฝ ๐ป (๐) prove that this column is lin. indep. for some ๐=๐(๐)
17
reduction chain in: graph G, ๐โโ in: weighted bipartite G, ๐โโ
out: #๐โcliques of ๐บ in: weighted bipartite G, ๐โโ out: ๐โ โณ ๐ [๐บ] ๐โ๐ ๐ค(๐) in: digraph G, type ๐, ๐โโ out: #kโUCWs of G with type ๐ in: weighted digraph G, ๐โโ out: ๐ถโ ๐ซ๐ ๐ [๐บ] ๐โ๐ถ ๐ค(๐) in: digraph G, ๐โโ out: #๐โpartial cycle covers of ๐บ
18
future work in: graph G, ๐โโ in: weighted bipartite G, ๐โโ
out: #๐โcliques of ๐บ in: weighted bipartite G, ๐โโ out: ๐โ โณ ๐ [๐บ] ๐โ๐ ๐ค(๐) in: digraph G, type ๐, ๐โโ out: #kโUCWs of G with type ๐ in: weighted digraph G, ๐โโ out: ๐ถโ ๐ซ๐ ๐ [๐บ] ๐โ๐ถ ๐ค(๐) in: digraph G, ๐โโ out: #๐โpartial cycle covers of ๐บ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.