Presentation is loading. Please wait.

Presentation is loading. Please wait.

Weighted counting of k-matchings is #W[1]-hard

Similar presentations


Presentation on theme: "Weighted counting of k-matchings is #W[1]-hard"โ€” Presentation transcript:

1 Weighted counting of k-matchings is #W[1]-hard
Markus Blรคser, Radu Curticapean Saarland University, Computational Complexity Group

2 counting (perfect) matchings
since 1976 and counting. biadjacency matrix ๐ด of bipartite ๐บ ๐‘๐‘’๐‘Ÿ๐‘š ๐ด =#๐‘ƒ๐‘’๐‘Ÿ๐‘“๐‘€๐‘Ž๐‘ก๐‘โ„Ž(๐บ) ๐’…๐’†๐’• ๐‘จ = ๐œŽโˆˆ ๐‘† ๐‘› ๐‘ ๐‘”๐‘› ๐œŽ 1โ‰ค๐‘–โ‰ค๐‘› ๐‘Ž ๐‘–,๐œŽ ๐‘– ๐’‘๐’†๐’“๐’Ž ๐‘จ = ๐œŽโˆˆ ๐‘† ๐‘› 1โ‰ค๐‘–โ‰ค๐‘› ๐‘Ž ๐‘–,๐œŽ ๐‘– considered intractable poly-time computable 1967 #Planar-PerfMatch โ‰ค ๐‘ƒ ๐‘‘๐‘’๐‘ก (Fisher, Kasteleyn) 1976 definition of #๐‘ท, hardness of ๐‘๐‘’๐‘Ÿ๐‘š (Valiant) 1989 FPRAS for permanent (Jerrum, Sinclair) 2004 parameterized counting complexity (Flum, Grohe) 2007 #Match on planar G of ฮ”=3 is #P-hard. (Xia et al.)

3 parameterized counting
parameterized problems input (๐‘ฅ,๐‘˜) with parameter ๐‘˜ typically solvable in time ๐’ ๐‘ถ(๐’Œ) or time ๐’‡(๐’Œ)๐’ ๐‘ถ(๐Ÿ) count ๐‘˜-vertex covers: ๐‘‚(๐‘› ๐‘˜ )โ†’ ๐‘‚(2 ๐‘˜ ๐‘›) โ†’โ€ฆ count ๐‘˜-cliques: ๐‘‚ ๐‘› ๐‘˜ โ†’๐‘‚( ๐‘› ๐œ” 3 ๐‘˜ ) โ†’๐‘ญ๐‘ท๐‘ป? define class #W[1] as closure of ๐‘˜โˆ’#๐ถ๐‘™๐‘–๐‘ž๐‘ข๐‘’๐‘  underโ€ฆ fpt-turing reduction ๐‘จ โ‰ค ๐’‡๐’‘๐’• ๐‘ป ๐‘ฉ: solves ๐ด(๐‘ฅ,๐‘˜) in time ๐‘“ ๐‘˜ ๐‘› ๐‘‚(1) with oracle for ๐ต queries B(๐‘ฅโ€ฒ,๐‘˜โ€ฒ) have ๐‘˜ โ€ฒ โ‰ค๐‘”(๐‘˜) ๐—๐ ๐…๐๐“

4 โ€žsimpleโ€œ substructure
known results โ€žsimpleโ€œ graph โ€žsimpleโ€œ substructure in: graph ๐บ, ๐’Œโˆˆโ„• par: ๐’Œ out: #VertexCover s ๐’Œ ๐บ for MSOL formula ๐œ‘(๐‘†) in: graph ๐บ par: treewidth ๐‘ฎ , out: #sets ๐‘† with (๐บ,๐‘†)โŠจ๐œ‘ ๐‘˜โˆ’Clique ๐‘˜โˆ’#Clique ๐‘˜โˆ’Cycle ๐‘˜โˆ’#Cycle ๐‘˜โˆ’Path ๐‘˜โˆ’#Path in: graph ๐บ par: genus(๐‘ฎ) out: #๐‘ƒ๐‘€(๐บ) ๐‘˜โˆ’Match ๐‘˜โˆ’#Match

5 our result status of ๐‘˜โˆ’#๐‘€๐‘Ž๐‘ก๐‘โ„Ž? ๐‘˜โˆ’#๐’˜๐‘€๐‘Ž๐‘ก๐‘โ„Ž is #๐‘Š 1 -hard.
โ€žhardness of permanentโ€œ in fpt-world also: ๐‘˜โˆ’๐‘€๐‘Ž๐‘ก๐‘โ„Žโˆˆ๐‘ƒ in: edge-weighted bipartite G, ๐‘˜โˆˆโ„• out: ๐‘€โˆˆ๐‘€๐‘Ž๐‘ก๐‘ โ„Ž ๐‘˜ [๐บ] ๐‘’โˆˆ๐‘€ ๐‘ค(๐‘’) ๐‘˜โˆ’#๐’˜๐‘€๐‘Ž๐‘ก๐‘โ„Ž is #๐‘Š 1 -hard. proof by series of reductions

6 partial path-cycle covers
k-partial cycle cover { C 1 ,โ€ฆ, C t } of cycles vertex-disjoint k edges in total k-partial path-cycle cover { C 1 ,โ€ฆ, C t } of paths and cycles โ€ฆ ๐’ž ๐‘˜ [๐บ] ๐’ซ๐’ž ๐‘˜ [๐บ]

7 ๐Ÿ ๐Ÿ reduction chain ๐‘˜โˆ’#๐‘ค๐‘€๐‘Ž๐‘ก๐‘โ„Ž ๐‘˜โˆ’#๐‘ค๐‘ƒ๐ถ๐ถ ๐‘˜โˆ’#๐ถ๐ถ
in: weighted bipartite G, ๐‘˜โˆˆโ„• out: ๐‘€โˆˆ โ„ณ ๐‘˜ [๐บ] ๐‘’โˆˆ๐‘€ ๐‘ค(๐‘’) ๐‘˜โˆ’#๐‘ค๐‘ƒ๐ถ๐ถ in: weighted digraph G, ๐‘˜โˆˆโ„• out: ๐ถโˆˆ ๐’ซ๐’ž ๐‘˜ [๐บ] ๐‘’โˆˆ๐ถ ๐‘ค(๐‘’) ๐‘˜โˆ’#๐ถ๐ถ in: digraph G, ๐‘˜โˆˆโ„• out: #๐‘˜โˆ’partial cycle covers of ๐บ

8 matchings โ‰ฅ ๐’‡๐’‘๐’• ๐‘ป path-cycle covers
standard reduction G S(G) split in out (๐‘ข,๐‘ฃ) { ๐‘ข ๐‘œ๐‘ข๐‘ก , ๐‘ฃ ๐‘–๐‘› } ๐“Ÿ ๐“’ ๐’Œ ๐‘ฎ โ‰… ๐“œ ๐’Œ ๐‘บ ๐‘ฎ implies ๐ถโˆˆ๐’ซ๐’ž ๐บ ๐‘’โˆˆ๐ถ ๐‘ค(๐‘’) = ๐‘€โˆˆโ„ณ ๐บ ๐‘’โˆˆ๐‘€ ๐‘ค(๐‘’)

9 ๐Ÿ ๐Ÿ reduction chain ๐‘˜โˆ’#๐‘ค๐‘€๐‘Ž๐‘ก๐‘โ„Ž ๐‘˜โˆ’#๐‘ค๐‘ƒ๐ถ๐ถ ๐‘˜โˆ’#๐ถ๐ถ
in: weighted bipartite G, ๐‘˜โˆˆโ„• out: ๐‘€โˆˆ โ„ณ ๐‘˜ [๐บ] ๐‘’โˆˆ๐‘€ ๐‘ค(๐‘’) ๐‘˜โˆ’#๐‘ค๐‘ƒ๐ถ๐ถ in: weighted digraph G, ๐‘˜โˆˆโ„• out: ๐ถโˆˆ ๐’ซ๐’ž ๐‘˜ [๐บ] ๐‘’โˆˆ๐ถ ๐‘ค(๐‘’) ๐‘˜โˆ’#๐ถ๐ถ in: digraph G, ๐‘˜โˆˆโ„• out: #๐‘˜โˆ’partial cycle covers of ๐บ

10 path-cycle covers โ‰ฅ ๐’‡๐’‘๐’• ๐‘ป cycle covers
analysis via path-cycle polynomial ๐›พ ๐บ;๐‘ฅ โ‰” ๐ถโˆˆ๐’ซ๐’ž ๐บ ๐‘ฅ ๐ถ ๐‘ค ๐ถ transform ๐บโ†ฆ ๐บ ๐‘ by gadgets b -b b -b b -b b -b -b b recipe for path-cycle covers in ๐บ ๐‘ path-cycle cover ๐‘ช in ๐บ as core at path ends: add nothing or at isolated vts: add nothing or or b -b b -b ๐›พ ๐บ ๐‘ ;๐‘ฅ = ๐ถโˆˆ๐’ซ๐’ž ๐บ ๐‘ฅ ๐ถ (1+๐‘๐‘ฅ) #๐‘๐‘Ž๐‘กโ„Ž ๐ถ (1+๐‘๐‘ฅโˆ’๐‘๐‘ฅ) #๐‘–๐‘ ๐‘œ๐‘™ ๐ถ interpolation along ๐‘ allows to track out paths

11 ๐Ÿ ๐Ÿ reduction chain ๐‘˜โˆ’#๐ถ๐ถ ๐‘˜โˆ’#๐‘ก๐‘ฆ๐‘๐‘ˆ๐ถ๐‘Š ๐‘˜โˆ’#๐ถ๐‘™๐‘–๐‘ž๐‘ข๐‘’๐‘  in: digraph G, ๐‘˜โˆˆโ„•
out: #๐‘˜โˆ’partial cycle covers of ๐บ ๐‘˜โˆ’#๐‘ก๐‘ฆ๐‘๐‘ˆ๐ถ๐‘Š in: digraph G, type ๐œƒ, ๐‘˜โˆˆโ„• out: #kโˆ’UCWs of G with type ๐œƒ ๐‘˜โˆ’#๐ถ๐‘™๐‘–๐‘ž๐‘ข๐‘’๐‘  in: graph G, ๐‘˜โˆˆโ„• out: #๐‘˜โˆ’cliques of ๐บ

12 cycle-like structures
for tuple ๐‘Š, let ๐’ฎ ๐‘Š โ‰”{cyclic shifts of W} CW ๐‘Š=๐’ฎ(๐‘‡) cycle ๐ถ=๐’ฎ(๐‘‡) no repeating vts. UCW ๐‘Š 1 ,โ€ฆ, ๐‘Š ๐‘ก closed walk ๐‘ฃ 1 , โ€ฆ, ๐‘ฃ ๐‘˜โˆ’1 , ๐‘ฃ 1

13 types of UCWs ๐‘“ ๐‘ˆ ๐‘ฃ โ‰” #visits of ๐‘ˆ at ๐‘ฃ
similar to types of cyclic walks defined by Flum, Grohe ๐‘“ ๐‘ˆ ๐‘ฃ โ‰” #visits of ๐‘ˆ at ๐‘ฃ 2 3 1 type ๐œƒ ๐‘ˆ = ๐‘“ ๐‘ˆ ๐‘ฃ 1 ,โ€ฆ, ๐‘“ ๐‘ˆ ( ๐‘ฃ ๐‘› ) 1 size ๐‘˜=8 ๐œƒ= 0,1,1,1,2,3 (omitting 0s is fine) 1 size ๐‘˜=4 ๐œƒ= 0,0,1,1,1,1 size ๐‘˜=9000 ๐œƒ= 9000

14 typed UCWs โ‰ฅ ๐’‡๐’‘๐’• ๐‘ป cliques
proof adapted from Flum, Grohe In G, replace all edges by , and add Want to count induced subgraphs isomorphic to ๐พโ‰” ๐พ ๐‘˜ . Consider set ๐’ฐ of UCWs of type ๐œƒ ๐‘˜,๐‘™ := ๐‘™,โ€ฆ,๐‘™ in G. k Partition ๐’ฐ according to visited vertices ๐‘†โˆˆ ๐‘‰ ๐‘˜ . Note: If ๐บ ๐‘† โ‰ƒ๐บ ๐‘† โ€ฒ , then โ€žsameโ€œ UCWs in ๐‘† and ๐‘†โ€ฒ. Partition ๐’ฐ according to isomorphism type of ๐บ ๐‘† , which is some graph ๐ป on ๐‘˜ vertices.

15 typed UCWs โ‰ฅ ๐’‡๐’‘๐’• ๐‘ป cliques
graph H of order k in host graph G ๐›ฝ (๐‘™) โ‰”#UCWs of type ๐œƒ ๐‘˜,๐‘™ in ๐บ ๐›ฝ ๐ป (๐‘™) โ‰”#UCWs of type ๐œƒ ๐‘˜,๐‘™ in ๐ป ๐‘ฅ ๐ป โ‹… ๐›ฝ ๐ป (๐‘™) G ๐‘ฅ ๐ป โ‰”#copies of ๐ป in ๐บ H ๐›ฝ (๐‘™) = ๐ปโˆˆ ๐บ๐‘Ÿ๐‘Ž๐‘โ„Ž๐‘  ๐‘˜ ๐‘ฅ ๐ป โ‹… ๐›ฝ ๐ป (๐‘™)

16 typed UCWs โ‰ฅ ๐’‡๐’‘๐’• ๐‘ป cliques
๐›ฝ (๐‘™) โ‰”#UCWs of type ๐œƒ ๐‘˜,๐‘™ in ๐บ oracle call ๐›ฝ ๐ป (๐‘™) โ‰”#UCWs of type ๐œƒ ๐‘˜,๐‘™ in ๐ป oracle call ๐‘ฅ ๐ป โ‰”#isomorphic copies of ๐ป in ๐บ ๐’™ ๐‘ฒ wanted ๐›ฝ ๐ป 1 (1) โ‹ฏ ๐›ฝ ๐พ (1) โ‹ฎ โ‹ฑ โ‹ฎ ๐›ฝ ๐ป 1 (๐‘™) โ‹ฏ ๐›ฝ ๐พ (๐‘™) ๐‘ฅ ๐ป 1 โ‹ฎ ๐’™ ๐‘ฒ = ๐›ฝ โ‹ฎ ๐›ฝ ๐‘™ ๐›ฝ (๐‘™) = ๐ปโˆˆ ๐บ๐‘Ÿ๐‘Ž๐‘โ„Ž๐‘  ๐‘˜ ๐‘ฅ ๐ป โ‹… ๐›ฝ ๐ป (๐‘™) prove that this column is lin. indep. for some ๐‘™=๐‘“(๐‘˜)

17 reduction chain in: graph G, ๐‘˜โˆˆโ„• in: weighted bipartite G, ๐‘˜โˆˆโ„•
out: #๐‘˜โˆ’cliques of ๐บ in: weighted bipartite G, ๐‘˜โˆˆโ„• out: ๐‘€โˆˆ โ„ณ ๐‘˜ [๐บ] ๐‘’โˆˆ๐‘€ ๐‘ค(๐‘’) in: digraph G, type ๐œƒ, ๐‘˜โˆˆโ„• out: #kโˆ’UCWs of G with type ๐œƒ in: weighted digraph G, ๐‘˜โˆˆโ„• out: ๐ถโˆˆ ๐’ซ๐’ž ๐‘˜ [๐บ] ๐‘’โˆˆ๐ถ ๐‘ค(๐‘’) in: digraph G, ๐‘˜โˆˆโ„• out: #๐‘˜โˆ’partial cycle covers of ๐บ

18 future work in: graph G, ๐‘˜โˆˆโ„• in: weighted bipartite G, ๐‘˜โˆˆโ„•
out: #๐‘˜โˆ’cliques of ๐บ in: weighted bipartite G, ๐‘˜โˆˆโ„• out: ๐‘€โˆˆ โ„ณ ๐‘˜ [๐บ] ๐‘’โˆˆ๐‘€ ๐‘ค(๐‘’) in: digraph G, type ๐œƒ, ๐‘˜โˆˆโ„• out: #kโˆ’UCWs of G with type ๐œƒ in: weighted digraph G, ๐‘˜โˆˆโ„• out: ๐ถโˆˆ ๐’ซ๐’ž ๐‘˜ [๐บ] ๐‘’โˆˆ๐ถ ๐‘ค(๐‘’) in: digraph G, ๐‘˜โˆˆโ„• out: #๐‘˜โˆ’partial cycle covers of ๐บ


Download ppt "Weighted counting of k-matchings is #W[1]-hard"

Similar presentations


Ads by Google