Download presentation
Presentation is loading. Please wait.
1
Clausius-Clapeyron Equation
And you thought you were already saturated!
2
Reading Hess Tsonis Wallace & Hobbs Bohren & Albrecht pp 39 - 42
3
Objectives Be able to describe the physical processes of net evaporation, net condensation and equilibrium Be able to describe the changes that occur to water substance as pressure and volume changes on a phase diagram
4
Objective Be able to state the only factor that determines the rate of evaporation from a water surface Be able to state the factor that determines the rate of condensation of water molecules from the air
5
Objective Be able to determine if net evaporation, net condensation or equilibrium exists given a temperature and pressure on a pressure vs. temperature diagram for water substance
6
Objective Be able to perform calculations using the Clausius Clapyeron Equation, including the determination of saturation vapor pressure. Be able to describe the change in boiling point temperature with pressure
7
Objective Be able to provide the definition of dew point and frost point from memory Be able to provide the definition of relative humidity from memory
8
Objective Be able to calculate relative humidity
Be able to distinguish the difference between WMO and traditional defintions of relative humidity
9
Water at Equilibrium Twater Rate of evaporation Constant
Function of water temperature Twater
10
Water at Equilibrium Rate of Condensation Variable
Function of water vapor mass in air
11
Water at Equilibrium At Equilibrium Rate of evaporation condensation =
12
Water at Equilibrium Twater At Equilibrium Evaporation = f(T)
Rate of evaporation is a function of temperature Evaporation = f(T) Twater Rate of evaporation Rate of condensation =
13
Water at Equilibrium Tair Twater At Equilibrium Condensation = f(T)
Rate of condensation also a function of temperature. Twater Tair Condensation = f(T) Rate of evaporation condensation =
14
Water at Equilibrium Tair Tair = Twater Twater At Equilibrium Rate of
evaporation condensation =
15
Water at Equilibrium Water Vapor Partial Pressure
Function of mass of water vapor
16
Rate of Condendation = Rate of Evaporation
Water at Equilibrium Equilibrium Curve Rate of Condendation = Rate of Evaporation es Equilibrium es = water vapor pressure at equilibrium (saturation) Pressure Temperature
17
Condensation Water Vapor Pressure > Equilibrium es e > es e
Temperature
18
Condensation Water Vapor Pressure > Equilibrium Net Condensation es
e > es e Pressure Temperature
19
Condensation = Evaporation
Water Vapor Pressure > Equilibrium Condensation = Evaporation es e = es Pressure e Temperature
20
Evaporation Water Vapor Pressure < Equilibrium es Net Evaporation
e < es e Temperature
21
Evaporation Water Vapor Pressure < Equilibrium es Net Evaporation
e < es e Temperature
22
Condensation = Evaporation
Water Vapor Pressure < Equilibrium Condensation = Evaporation es e = es Pressure e Temperature
23
Water at Equilibrium Equilibrium Curve Values es Pressure Temperature
1013 mb Pressure 6 mb 0oC 100oC Temperature
24
Water at Equilibrium Equilibrium Curve
Where do these numbers come from? es 1013 mb Pressure 6 mb 0oC 100oC Temperature
25
Famous Clip Art Scientists!
Water at Equilibrium Equilibrium Curve Where do these numbers come from? Clausius-Clapeyron Equation Jaimie Clapeyron Thelma Clausius Famous Clip Art Scientists!
26
Clausius-Clapeyron Equation
Rudolf Clausius 1822 – 1888 German Mathematical Physicist Emile Clapeyron French Engineer
27
Clausius-Clapeyron Equation
The amount of moisture in the air (at equilibrium) depends on Temperature of Air/Water Water Vapor Pressure of Air Volume (or Specific Volume) of Air Equilibrium es Pressure Constant Volume Temperature P-T Diagram
28
Clausius-Clapeyron Equation
Our discussion assumed constant volume Temperature Pressure es Equilibrium P-T Diagram Constant Volume
29
Clausius-Clapeyron Equation
The volume of water substance changes during phase changes Gas Solid Liquid
30
Clausius-Clapeyron Equation
Pressure-Volume Diagram Ideal Gas Pressure Volume
31
Clausius-Clapeyron Equation
Pressure-Volume Diagram Ideal Gas Pressure Volume
32
Clausius-Clapeyron Equation
Pressure-Volume Diagram Vapor Water T3 Pressure (e) O2 … -119oC N2 … -147oC H oC Water & Vapor Vapor T2 T1 Volume (V)
33
Pressure-Volume Diagram
Also known as Phase Diagram Water Vapor Pressure (e) Water & Vapor T2 T1 Volume (V)
34
Pressure-Volume Diagram
Isotherms T2>T1 Water Vapor Pressure (e) Water & Vapor T2 T1 Volume (V)
35
Pressure-Volume Diagram
Vapor Phase Ideal Gas Law Decrease Volume Increase Pressure Water Vapor Pressure (e) Water & Vapor T2 B T1 A Volume (V)
36
Pressure-Volume Diagram
Water & Vapor Phase (B) Slight Change in Volume Causes Condensation Water Vapor Pressure (e) Water & Vapor T2 B T1 Volume (V)
37
Pressure-Volume Diagram
Water & Vapor Phase (B to C) Condensation Volume Decreasing Constant Pressure at Constant Temp. Water Vapor Pressure (e) Water & Vapor T2 C B T1 Volume (V) Condensation
38
Pressure-Volume Diagram
Water & Vapor Phase (B to C) Condensation Water Vapor Pressure is at Equilibrium (es) Water Vapor Pressure (e) Water & Vapor T2 C B T1 Volume (V)
39
Pressure-Volume Diagram
Water Phase (C) All Water Vapor Has Condensed Water Vapor Pressure (e) Water & Vapor T2 C T1 Volume (V)
40
Pressure-Volume Diagram
Water Phase (C to D) Volume Decreases Little Virtually Incompressible D Water Vapor Pressure (e) Water & Vapor T2 C T1 Volume (V)
41
Clausius-Clapeyron Equation
We’ve also ignored the heat required for phase change + =
42
Clausius-Clapeyron Equation
Let’s investigate all these variables using the Carnot Cycle! Vapor Water & Volume (V) Pressure (e) T1 T2
43
Clausius-Clapeyron Equation
Reversible cycle Water B C Vapor Pressure (e) Water & Vapor D T2 A T1 Specific Volume (a)
44
Clausius-Clapeyron Equation
At Point A Water Vapor es = Pressure T1 = Temperature aw = Volume C B Water & Vapor T2 Pressure (e) A D es T1 es,T1 , aw Specific Volume (a)
45
Clausius-Clapeyron Equation
At Point B es+Des T1+DT aw +Daw Water Vapor Vapor Pressure es+Des Temperature T2 = T1+DT Volume aw +Daw es +Des C B Water & Vapor T2 Pressure (e) A D es T1 es,T1 , aw Specific Volume (a)
46
Clausius-Clapeyron Equation
At Point C es+Des T1+DT av +Dav Water Vapor Pressure es+Des Temperature T2 = T1+DT Volume av +Dav es +Des C B Vapor Water & Vapor T2 Pressure (e) A D es T1 es,T1 , av Specific Volume (a)
47
Clausius-Clapeyron Equation
At Point D es+Des T1+DT av +Dav Water Vapor es = Pressure T1 = Temperature av = Volume es +Des C B Vapor Water & Vapor T2 Pressure (e) A D es T1 es,T1 , av Specific Volume (a)
48
Clausius-Clapeyron Equation
First Law of Thermodynamics Second Law of Thermodynamics
49
Clausius-Clapeyron Equation
Combine the equations Integrate over the closed path
50
Clausius-Clapeyron Equation
For a cyclic process So …..
51
Clausius-Clapeyron Equation
es+Des T1+DT aw +Daw es+Des T1+DT av +Dav Water Vapor Apply to the Phase Diagram es +Des C B Vapor Water & Vapor Des T2 Pressure (e) A es D av - aw T1 es,T1 , aw es,T1 , av es,T1 , av es = Pressure Specific Volume (a)
52
Clausius-Clapeyron Equation
The area ABCD is similar to … So … Water Vapor es +Des C B Vapor Water & Vapor Des T2 Pressure (e) A es D av - aw T1 Specific Volume (a)
53
Clausius-Clapeyron Equation
Let’s evaluate the left hand side But the exact differential
54
Clausius-Clapeyron Equation
and So …
55
Clausius-Clapeyron Equation
From A to B esA+Des T1+DT aw +Daw es+Des T1+DT av +Dav Water Vapor C B Vapor Water & Vapor T2 sw = entropy of water Pressure (e) A D T1 es,T1 , aw es,T1 , av es,T1 , av Specific Volume (a)
56
Clausius-Clapeyron Equation
From B to C Isothermal esA+Des T1+DT aw +Daw es+Des T1+DT av +Dav Water Vapor C B Vapor Water & Vapor T2 Pressure (e) A D T1 es,T1 , aw es,T1 , av es,T1 , av Specific Volume (a)
57
Clausius-Clapeyron Equation
From C to D esA+Des T1+DT aw +Daw es+Des T1+DT av +Dav Water Vapor C B Vapor Water & Vapor T2 Pressure (e) sv = entropy of vapor A D T1 es,T1 , aw es,T1 , av es,T1 , av Specific Volume (a)
58
Clausius-Clapeyron Equation
From D to A Isothermal esA+Des T1+DT aw +Daw es+Des T1+DT av +Dav Water Vapor C B Vapor Water & Vapor T2 Pressure (e) A D T1 es,T1 , aw es,T1 , av es,T1 , av Specific Volume (a)
59
Clausius-Clapeyron Equation
After substitution, the left hand side is
60
Clausius-Clapeyron Equation
Rearrange terms and take the limit
61
Clausius-Clapeyron Equation
Water Vapor C B Vapor Water & Vapor T2 During the isothermal process Pressure (e) sw sV A D dq = LV T1 Specific Volume (a) Lv = Latent Heat of Vaporization/Condensation
62
Clausius-Clapeyron Equation
Substitute Water Vapor C B Vapor Water & Vapor T2 Pressure (e) sw sV A D dq = LV T1 Specific Volume (a)
63
Clausius-Clapeyron Equation
Specific Volume of Liquid Water (aw ) Rearrange terms If av > aw, then ... Specific Volume of Liquid Water (av )
64
Clausius-Clapeyron Equation
es Describes the change of the equilibrium water vapor pressure curve versus temperature Pressure Constant Volume Temperature
65
Clausius-Clapeyron Equation
Ideal Gas Law Substitute
66
Clausius-Clapeyron Equation
Rearrange terms Integrate with reference es = 273K
67
Clausius-Clapeyron Equation
Integrate Lv = Latent Heat of Vaporization = 2.5x106 J kg-1 Rv = Gas Constant for Water Vapor = 461 J K-1 kg-1
68
Clausius-Clapeyron Equation
Substitute for Lv and Rv Rearrange Terms
69
Clausius-Clapeyron Equation
Simplify Simplify more ....
70
Clausius-Clapeyron Equation
Raise to e es = equilibrium vapor pressure (in mb) T = temperature (in K) Good approximation for low values of temperature and pressure
71
Magnus Formula A better approximation
es = equilibrium vapor pressure (in mb) T = temperature (in K) Accounts for variation in Latent Heat
72
Goff-Gratch Formula Yet another approximation
Used in Smithsonian Meteorological Tables
73
Equilibrium with Ice Equilibrium Curve Water Vapor vs. Liquid Water es
Temperature Pressure Equilibrium es
74
Equilibrium with Ice What about water vapor vs. ice?
75
Equilibrium with Ice Phase Diagram Pressure (e) Volume (V) Water Water
& Vapor Ice Vapor 0oC Ice & Vapor T Volume (V)
76
Equilibrium with Ice Clausius-Clapeyron Equation
Use the Latent Heat of Sublimation Ls = Latent Heat of Sublimation = x106 J kg-1 Rv = Gas Constant for Water Vapor = 461 J K-1 kg-1
77
Equilibrium with Ice Equilibrium Curve for Ice esw Pressure esi 0.01oC
Liquid Water esw Pressure Equilibrium with Ice esi 0.01oC Temperature
78
Equilibrium with Ice Supercooled Liquid Water (SLW) Absence of ice esw
Temperature Pressure Equilibrium with Liquid Water esw with Ice 0.01oC esi SLW
79
Boiling Point Point at which vapor pressure in the liquid is equal to the atmospheric pressure on the liquid surface
80
Boiling Point Heat Energizes Water Molecules Bonds Broken Vapor Phase
81
Boiling Point Temperature of Boiling Point Varies with Atmospheric Pressure Equilibrium with Liquid Water Pressure es 1000 mb Boiling Point 100oC Temperature
82
Boiling Point Temperature of Boiling Point Varies with Atmospheric Pressure Equilibrium with Liquid Water Pressure es 1000 mb 750 mb Boiling Point 95oC 100oC Temperature
83
Boiling Point Change in Boiling Points Can Be Calculated Using Clausius-Clapeyron Equation Equilibrium with Liquid Water Pressure es 1000 mb 750 mb Boiling Point 95oC 100oC Temperature
84
Boiling Point dT = change in boiling point
des = change in atmospheric pressure av = specific volume of vapor at boiling aw = specific volume of water at boiling
85
Moisture Variables We now have equilibrium curves for liquid water and ice Equilibrium with Liquid Water esw Pressure Equilibrium with Ice esi 0.01oC Temperature
86
Moisture Variables However, the atmosphere is often not in equilibrium (or saturated). es Pressure ‘Saturated’ eequilibrium ‘Less Than Saturated’ eatmosphere Temperature
87
Moisture Variables How close it the air to equilibrium? es Pressure
‘Saturated’ eequilibrium ‘Less Than Saturated’ eatmosphere Temperature
88
Moisture Variables Relative Humidity (RH) (Traditional)
ratio of the actual water vapor pressure (e) to the saturation (or equilibrium) vapor pressure (es)
89
Moisture Variables Relative Humidity (RH) (WMO)
ratio of the actual mixing ratio (w) to the saturation (or equilibrium) mixing ratio (ws)
90
Moisture Variables Relative Humidity (RH) Problem
They are not the same Slight difference
91
Moisture Variables Relative Humidity es Pressure RH = 100% esaturation
eatmosphere Temperature
92
Moisture Variables Dew Point (Td)
Temperature to which air must be cooled in order for it to become saturated with respect to liquid water at the initial pressure and mixing ratio Td
93
Moisture Variables Dew Point (Td)
Water vapor pressure and atmospheric pressure are constant Temperature Pressure es Tatmosphere esaturation RH = 100% Td Isobaric Cooling
94
Moisture Variables Frost Point (Tf)
Temperature to which air must be cooled in order for it to become saturated with respect to ice at the initial pressure and mixing ratio Temperatures less than 0oC Tf
95
Moisture Variables Frost Point (Tf)
Water vapor pressure and atmospheric pressure are constant Temperature Pressure es Tatmosphere esaturation RH = 100% Tf Isobaric Cooling esi
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.