Download presentation
Presentation is loading. Please wait.
1
Bio.B.2- Genetics CHAPTER 11
2
B2: Genetics Describe and/ or predict observed patterns of inheritance i.e. dominant, recessive, co-dominant, incomplete dominance, sex- linked, polygenic and multiple alleles.
3
B2 Vocabulary genetics homozygous fertilization heterozygous trait
hybrid gene allele Principle of dominance segregation Gamete probability homozygous heterozygous phenotype genotype punnett square incomplete dominance codominance multiple allele polygenic trai
4
Review… What are the four macromolecules?
1. Carbohydrates 2. Proteins 3. Lipids 4. Nucleic Acids Which of the four macromolecule is responsible for an individuals unique characteristics? Nucleic acids - DNA
5
Introduction Genetics = study of heredity
Heredity = transfer of characteristics from parent to offspring
6
Gregor Mendel: Father of Modern Genetics Studied Pea Plants
Observed recurring patterns Pea plants made good subjects to study because mendel could control breeding, the plants would produce many offspring plants in just one growing season and all of the traits he studies were “either-or” traits.
7
What Mendel Knew… A trait is a specific characteristic
EX: pea color, pea shape, flower color
8
What Mendel Knew… Mendel could control fertilization
Self-pollination – one plant fertilizes itself Cross-pollination – two different plants
9
What Mendel Knew… “true-breeding” plants always produced offspring plants that had the same trait as the parent EX: a true-breeding purple flower plant produces plants that also have purple flowers
10
What Mendel Knew… A “hybrid” = a cross between two different plants
Offspring showed the characteristic of one parent
11
What Mendel Saw 1st generation parental trait disappears
2nd generation parental trait reappears in a 3:1 ratio
12
What Mendel saw P-generation True-breeding
READ ONLY P-generation True-breeding When self pollinated, always produce offspring plants with identical traits Ex: a true-breeding purple plant ALWAYS produces plants with purple flowers
13
F1 generation (hybrids)
READ ONLY F1 generation (hybrids) F1 Generation Produced by crossing pure-bred P plants Always saw the same results (parental trait disappears)
14
F2 generation Produced by self-pollination of F1 plants
Mendel F2 generation READ ONLY Produced by self-pollination of F1 plants Always saw the same results (parental trait reappears) in a specific ratio 14 14 14 14 14 14 14
15
Mendel’s Conclusions:
Traits are determined by “factors” that get passed from one generation to the next Factors = genes
16
Mendel’s Conclusions:
There are different “forms” of a gene that account for variations in inherited characteristics Forms = alleles EX: purple allele or white allele
17
Mendel’s Conclusions:
For each trait, an organism inherits two alleles (one from each parent) The alleles may be identical or they may be different Homozygous = two identical alleles Heterozygous = two different alleles
18
Mendel’s Conclusions:
Physical appearance (phenotype) is influenced by the alleles inherited for the trait (genotype) some “alleles” are dominant and some are recessive One dominant allele will give the dominant trait Need two recessive alleles to have the recessive trait Letters used to differentiate alleles dominant = uppercase recessive = lowercase
19
Mendel’s Conclusions:
Alleles segregate during gamete formation Gamete = reproductive cell that contributes to the new organism Each parent contributes only one allele to their offspring
21
Gene (A) or Allele (B) Hair color…….. Brown hair….... Purple flowers.
Flower color…. Tall plant……… Plant height….. Tail length……. Long tail………. GENE ALLELE
22
Homozygous (A) or Heterozygous (B)
AA ……. Bb ……. BB ……. bb ……. Rr ……. dd ……. Homozygous Dom. Heterozygous Homozygous Rec.
23
Genotype (A) or Phenotype (B)
AA ……. Blue eyes heterozygous Bb Freckles Visible trait Genotype Phenotype
24
Dominant Trait (A) or Recessive (B)
AA ……. Bb ……. BB ……. bb ……. Rr ……. dd ……. Dominant Recessive
25
Applying Mendel’s Principles
11.2
26
Probability Probability = the likelihood that a particular event will occur The way alleles separate during gamete formation is just as random as a coin toss Therefore, probability can be used to predict genetic outcomes.
27
Punnett Squares: mathematical tool used to predict genetic outcomes
Axes of grid = possible gamete genotypes of parents Grid boxes = possible genotypes of offspring Reminders Genotype = genetic makeup (alleles) Phenotype = physical appearance When constructing Punnett Squares, ALWAYS Define the terms Define the genotypes of the parents Analyze the results
28
Punnett Squares can be used to explain Mendel’s results…
F1 generation
29
Punnett Squares can be used to explain Mendel’s results…
F1 generation
30
Punnett Squares can be used to explain Mendel’s results…
F2 generation
31
Practice with Punnett squares
For Simple Dominance Practice Problems, Click Here Practice with Punnett squares 11.2
32
Exceptions to Mendel Incomplete Dominance Codominance Multiple Alleles
Sex-linked Traits Polygenic traits Epistasis Interaction of environment and genotype
33
Incomplete Dominance Neither allele is completely dominant
Heterozygote has a blended phenotype
34
Codominance Both alleles get expressed Heterozygote has both traits
35
Multiple Alleles Trait with more than two alleles in a population
Example – Blood Types 3 different alleles (A, B, O) A and B alleles are codominant O allele is recessive
37
Heterozygous for the A allele
Homozygous for the A allele
38
Read Only
39
Sex-Linked Genes (X-linked)
Carried on the sex chromosomes (female = XX; male = XY) More common in males XY = only need one allele for trait to be present Females need two copies of allele for trait to be present Can be carriers of the trait (heterozygous genotype) Passed from mother to son Examples include colorblindness and hemophilia
43
Polygenic Traits Traits that are determined by the interaction of 2 or more genes Ex: Skin color, eye color, height, etc
44
Practice with Punnett squares
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.