Download presentation
Presentation is loading. Please wait.
1
An Animated Instructional Module
for Teaching Production Economics with the Aid of Three-Dimensional Graphics David L. Debertin University of Kentucky Y 250 2 4 167 83 6 8 10 12 14 16 18 20 X1 20 18 16 14 12 10 X2 8 6 4
2
This instructional module is based on the
polynomial production function 2 3 2 y = x + x x + x x 1 2 1 1 2 3 x x x . 2 1 2 This production function was chosen for a number of reasons.
3
1. It possesses a region of increasing marginal returns,
a region of diminishing marginal returns and a region of negative marginal returns to the variable inputs x and x . 1 2 dy = x x x . 2 1 1 2 dx 1 2 dy = x x x . 2 2 1 dx 2
4
2. Since the function has a finite maximum,
there are "ring" isoquants, centered at the maximum output level. At the maximum output level, dy and dy are both zero. dx dx 1 2 Maximum output is units corresponding to x = x = units 1 2
5
3. There is a global point of profit maximization.
This point occurs at an output level less than the global point of profit maximization. For example, if the price of the product (y) is $1.00 per unit, the price of x is $3.00 1 per unit, and the price of x is $1.50 per unit, 2 then profit is maximum at x =15.21 and x = 15.71 1 2 units. Total Revenue is $234.85; Total Cost for x and x is $69.20; 1 2 Profit is Total Revenue - Total Cost = $165.20
6
In the following sequence, the production surface
for the polynomial is sliced horizontally at various levels. The isoquant at each output level appears in red. Note that isoquants at low output levels are concave to the origin, but as the output level increases, the isoquants become convex to the origin. You are looking at the 3-D surface from the origin. x is at your right; x at your left. 1 2 Output (y) is measured on the vertical axis.
7
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
8
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
9
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
10
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
11
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
12
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
13
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
14
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
15
Y Y 250 250 167 167 83 83 20 20 20 20 18 18 18 18 16 16 16 16 14 14 14 14 12 12 12 12 10 10 10 10 8 8 8 8 X2 X2 6 6 X1 X1 6 6 4 4 4 4 2 2 2 2
16
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
17
Y Y 250 250 167 167 83 83 20 20 20 20 18 18 18 18 16 16 16 16 14 14 14 14 12 12 12 12 10 10 10 10 8 8 8 8 X2 X2 6 6 X1 X1 6 6 4 4 4 4 2 2 2 2
18
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
19
Y Y 250 250 167 167 83 83 20 20 20 20 18 18 18 18 16 16 16 16 14 14 14 14 12 12 12 12 10 10 10 10 8 8 8 8 X2 X2 6 6 X1 X1 6 6 4 4 4 4 2 2 2 2
20
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
21
Y Y 250 250 167 167 83 83 20 20 20 20 18 18 18 18 16 16 16 16 14 14 14 14 12 12 12 12 10 10 10 10 8 8 8 8 X2 X2 6 6 X1 X1 6 6 4 4 4 4 2 2 2 2
22
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
23
Y Y 250 250 167 167 83 83 20 20 20 20 18 18 18 18 16 16 16 16 14 14 14 14 12 12 12 12 10 10 10 10 8 8 8 8 X2 X2 6 6 X1 X1 6 6 4 4 4 4 2 2 2 2
24
2 4 6 8 10 12 14 16 18 20 X1 X2 Y 83 167 250
25
2 4 6 8 10 12 14 16 18 20 X1 X2 Y 83 167 250 2 4 6 8 10 12 14 16 18 20 X1 X2 Y 83 167 250
26
In the following sequence, isoquants representing
various output levels appear in different colors and the output level represented by each isoquant corresponds with the key at the bottom of the chart.
27
The budget constraint is represented by red
lines of constant slope P1/P2 where P1 is the price of input x , and P2 is the price of input 1 x . 2 Increases in the amount of money available for the purchase of inputs shift the budget constraint outward. Each budget constraint is tangent (just touches) an isoquant. These points, here marked by blue circles, are where P1/P2 = the Marginal Rate of Substitution of x for x . 1 2
28
Valid constrained output maximization points are
only those on isoquants that are convex to the origin of the graph. Points on concave isoquants are constrained output minimization points, and are marked with a yellow X. The expansion path connects valid points of constrained output maximization, and is shown in green.
29
Ridge line 1 connects all points of zero slope on the isoquants.
Ridge line 2 connects all points of infinite slope on the isoquants. Ridge lines, shown here in blue-green intersect at the global point of output maximization. This occurs at x = x = and y = 1 2
30
Pseudo Scale Line 1 connects profit maximization
points for x holding x constant. 1 2 Each point on Pseudo Scale Line 1 is defined by MPP x = P1/Py, where P1 is the price of x and 1 1 Py is the output price. Pseudo Scale Line 2 connects profit maximization points for x holding x constant. 2 1 Each point on Pseudo Scale Line 2 is defined by MPP x = P2/Py, where P2 is the price of x and 2 2 Py is the output price. Pseudo Scale Lines, shown here in orange, Converge at the point of global profit maximization.
31
What happens to Pseudo Scale Lines and the
position of the Expansion Path when one of the input prices changes is also shown. First, P2 (the price of x ) is increased. 2 Pseudo Scale Line 2 moves in from Ridge Line 2, and the Expansion Path now favors the use of the now relatively cheaper input x . 1 Then P2 (the price of x ) is decreased. 2 Pseudo Scale Line 2 moves toward Ridge Line 2, and the Expansion Path now favors the use of the now relatively cheaper input x . 2 Pseudo scale line 1 has not moved in either case as the price of x has not changed. 1
32
X2 20 18 16 14 12 10 8 6 4 2 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
33
X2 20 18 16 14 12 10 8 6 4 2 P1 P2 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
34
X2 20 18 16 14 12 10 8 6 X X 4 X 2 P1 P2 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
35
X2 20 18 Global Output Maximum 16 Expansion 14 Path 12 10 8 6 X X 4 X 2 P1 P2 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
36
X2 20 18 Global Output Maximum 16 Expansion 14 Path 12 10 8 6 X X 4 X 2 P1 P2 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
37
X2 20 18 Global Output Maximum 16 Ridge Line 2 Expansion 14 Path 12 10 8 6 X X 4 X 2 P1 Ridge P2 Line 1 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
38
X2 20 18 Global Output Maximum 16 Ridge Line 2 Expansion 14 Path 12 MPPx2= Px2/Py 10 8 6 X X 4 MPPx1 = X Px1/Py 2 P1 Ridge P2 Line 1 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
39
X2 20 18 Global Output Maximum 16 Ridge Line Global 2 Profit Maximum Expansion 14 Pseudo Path Scale Line 2 12 MPPx2= Px2/Py 10 8 6 X X Pseudo 4 Scale Line 1 MPPx1 = X Px1/Py 2 P1 Ridge P2 Line 1 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
40
X2 20 18 Global Output Maximum 16 Ridge Line 2 14 Expansion Global Path Profit 12 Maximum Pseudo Scale Line 2 10 MPPx2= Px2/Py 8 X 6 X Pseudo 4 Scale Line 1 MPPx1 = Px1/Py 2 P1 Ridge P2 Line 1 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
41
X2 20 18 Global Global Output Profit Maximum Maximum 16 Ridge Line 2 Pseudo Scale Line 2 14 MPPx2= 12 X Px2/Py Expansion Path 10 8 6 Pseudo 4 Scale Line 1 MPPx1 = Px1/Py 2 P1 Ridge P2 Line X X 1 2 4 6 8 X1 10 12 14 16 18 20 Y 24 47 71 95 119 142 166 190 213 237
42
In the following sequence, vertical slices
of the production surface are made. The slice is at the budget constraint angle relative to the origin of the graph. Each slice represents a different level of the budget constraint. The locus ABC represents the function being maximized or minimized in the constrained optimization problem. If B is lower than A or C, then the function is being minimized. If B is higher than A or C, then the function is being maximized.
43
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
44
Y 250 167 83 20 20 18 18 16 16 14 14 A 12 12 B C 10 10 8 8 X2 6 X1 6 4 4 2 2
45
Y 250 167 83 20 20 A 18 18 C B 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
46
Y 250 167 83 A C B 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
47
Y 250 167 83 B A C 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
48
Y 250 167 B 83 A C 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
49
Y 250 B 167 83 A C 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
50
2 4 6 8 10 12 14 16 18 20 X1 X2 Y 83 167 250 A B C
51
Y Y 250 250 B 167 167 83 83 A C 20 20 20 20 18 18 18 18 16 16 16 16 14 14 14 14 12 12 12 12 10 10 10 10 8 8 8 8 X2 X2 6 6 X1 X1 6 6 4 4 4 4 2 2 2 2
52
Global Output Max Global Profit Max Constrained Output Max Y 250 167
83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
53
2 4 6 8 10 12 14 16 18 20 X1 X2 Y 83 167 250 A B C
54
2 4 6 8 10 12 14 16 18 20 X1 X2 Y 83 167 250 A B C Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 X1 6 4 4 2 2
55
The following sequences illustrate three
approaches for precisely locating Pseudo Scale Lines and the point of Global Profit Maximization. Profit maximization in the single input case always occurs at the point where Py MPPx = Px or MPPx = Px/Py, where Px is the price of x. Consider this relationship in the two-input case. Mppx = P1/Py 1 MPPx = P2/Py , where 2 P1 = price of x ; P2 = price of x . 1 2
56
In this sequence, the budget constraint
C = $3.00 x x is represented by a 1 2 hyperplane of constant slope (since input prices are constant. The output quantity is multiplied by the output price, assumed to be $1.00 per unit. The hyperplane, shown in red, is raised to locate the position of the Pseudo Scale Lines and the global point of profit maximization. MPPx = P1/Py MPPx = P2/Py. 1 2
57
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2
58
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2
59
Y 250 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2
60
Global Output Maximum Y Ridge Line 2 Ridge Line 1 250 Input Price Hyperplane 167 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2
61
Global Output Maximum Y Global Profit Maximum Ridge Line 2 250 Ridge Line 1 Input Price Hyperplane Pseudo Scale Line 2 167 Pseudo Scale Line 1 83 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2
62
In this sequence, the gross revenue
surface is superimposed on the profit surface. The gross revenue surface appears in white, the profit surface in blue. The global point of revenue maximization and the global point of profit maximization are both shown. Py = $1.00; P1 = $3.00; P2 = $1.50
63
$ 250 153 57 -40 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2
64
Y $ 250 250 153 153 57 57 -40 -40 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2
65
$ Y 250 250 153 153 57 57 -40 -40 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2 Total Revenue Surface Profit Surface
66
Revenue, Profit Global Revenue Maximization $ Global Profit Maximization 250 250 153 153 57 57 -40 -40 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2 Total Revenue Surface Profit Surface
67
Revenue, Profit Global Revenue Maximization $ Global Profit Maximization 250 250 Ridge Line 2 Ridge Line 1 Pseudo Scale Line 2 153 153 Pseudo Scale Line 1 57 57 -40 -40 20 20 18 18 16 16 14 14 12 12 10 10 8 8 X2 6 6 4 X1 4 2 2 Total Revenue Surface Profit Surface
68
In this sequence, isorevenue contour lines
represent points of constant total revenue. They appear as dotted lines. Except for the units change, they look just like isoquants. Isoprofit contour lines are superimposed on the same graph. They are solid lines. Ridge lines connect points of zero or infinite slope on the isorevenue lines (isoquants). These are shown in cyan. Pseudo Scale Lines connect points of zero or infinite slope on isoprofit lines. They are shown in orange.
69
Isorevenue Lines Isoprofit Lines X2 20 18 16 14 12 10 8 6 4 2 2 4 6 8
2 4 6 8 10 12 14 16 18 20 X1 Isorevenue Lines Isoprofit Lines
70
Isorevenue Lines Isoprofit Lines X2 2 4 6 8 10 12 14 16 18 20 20 18 16
2 4 6 8 10 12 14 16 18 20 20 18 16 14 12 10 8 6 4 2 2 4 6 8 10 12 14 16 18 20 X1 Isorevenue Lines Isoprofit Lines
71
Isorevenue Lines Isoprofit Lines X2 2 4 6 8 10 12 14 16 18 20 20 18
2 4 6 8 10 12 14 16 18 20 20 18 Global Output Max 16 14 12 10 8 6 4 2 2 4 6 8 10 12 14 16 18 20 X1 Isorevenue Lines Isoprofit Lines
72
Isorevenue Lines Isoprofit Lines X2 20 2 4 6 8 10 12 14 16 18 20 18
2 4 6 8 10 12 14 16 18 20 18 Global Output Max 16 Global Profit Max 14 12 10 8 6 4 2 2 4 6 8 10 12 14 16 18 20 X1 Isorevenue Lines Isoprofit Lines
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.