Presentation is loading. Please wait.

Presentation is loading. Please wait.

Grand Canonical Ensemble

Similar presentations


Presentation on theme: "Grand Canonical Ensemble"— Presentation transcript:

1 Grand Canonical Ensemble
PHY 471, Statistical Physics, 2007 Lecture 09. Grand Canonical Ensemble Mahn-Soo Choi (Korea University) F. Reif, Fundamentals of Statistical and Thermal Physics (1965) Chapter 6.

2 Thermal and Chemical Equilibrium of the “System” A with the “Bath” B
"Universe" "System" "Environment (Bath)" The probability PA (EA , NA ) that the “system” has the energy EA and the particle number NA ? The probability Pα for the “system” to be found in the microstate α?

3 Equilibrium Condition The probability distribution PA (EA , NA ):
Γ(EA , NA |E , N ) Γ(E , N ) PA (EA , NA ) = ΓA (EA , NA )ΓB (E − EA , N − NA ) Γ(E , N ) = PA (EA , NA ) and hence log PA (EA , NA ) has a sharp peak at EA = E¯A and NA = N¯ A in equilibrium. PA(EA) ΓA(EA) ΓB (E − EA) EA

4 ∂ 1 1 ∂ The equilibrium condition is thus ∂ EA ⇒ TA TB log PA =0 =
EA =E¯A ∂ NA log PA =0 µA = µB NA =NA

5 1 Grand Canonical Ensemble The probability Pα ΓB (E − Eα , N − Nα )
kB log Pα ∂ SB ∂ EB ∂ SB ∂ NB ≈ SB (E , N ) − EA − NA EB =E NB =N T µNα T = SB (E , N ) − + Canonical distribution 1 ZG Eα − µNα kB T Pα = exp − where ZG is the normalization constant: Eα − µNα kB T ZG = exp − . α

6 −kB T log ZG = E − TS − µN = G Grand Partition Function ZG
ZG is more than just a normalization constant. From the expression for the entropy S = −kB E T µN T Pα log Pα = + kB log ZG α −kB T log ZG = E − TS − µN = G the Gibbs free energy!

7 Thermodynamics with Grand Canonical Ensemble
Partition function ZG G (T , µ, V , · · · ) = −kB T log ZG (T , µ, V , · · · ) dG = −SdT − Nd µ − PdV + · · · Thermodynamic quantities ∂ G ∂ T ∂ G ∂µ ∂ G ∂ V S = − , N = − , P = − , ···

8 S ∂ ∂ S More about the Entropy kB = − Pα log Pα = (E − µN ) + log ZG
∂β E − µN = −β log ZG S kB ∂β = 1 − β log ZG

9 The elementary consideration leads to
More about Pressure The elementary consideration leads to ∂ G ∂ V P = − Since the Gibbs free energy is an extensive quantity, it should be directly proportional to V . It means that ∂ G ∂ V = constant. The constant should be the pressure P : G = −kB T log ZG = PV .

10 A(E , N , V , · · · ) = −kB T log Z (T , N , V , · · · )
Summary of Ensembles Microcanonical ensemble Γ(E , N , V , · · · ) = δ(E − Eα ) α S (E , N , V , · · · ) = kB log Γ(E , N , V , · · · ) Canonical ensemble Z (T , N , V , · · · ) = exp − kB T α A(E , N , V , · · · ) = −kB T log Z (T , N , V , · · · ) Grand canonical ensemble Eα − µNα kB T ZG (T , N , V , · · · ) = exp − α G (E , µ, V , · · · ) = −kB T log FG (T , µ, V , · · · )


Download ppt "Grand Canonical Ensemble"

Similar presentations


Ads by Google