Download presentation
Presentation is loading. Please wait.
Published byMyrtle Burke Modified over 6 years ago
1
Triangle Starters Pythagoras A | Answers Pythagoras B | B Answers
Pythagoras C | C Answers Trigonometry A | A Answers Trigonometry B | B Answers Trigonometry C | C Answers Trigonometry D | D Answers Trigonometry E | E Answers Trigonometry F | F Answers Revision A | Revision A Answers Revision B | Revision B Answers Triangle Area | Triangle Area Answers Sine Rule A | Sine Rule A Answers Sine Rule B | Sine Rule B Answers Cosine Rule C | Cosine Rule C Answers Cosine Rule D | Cosine Rule D Answers
2
Pythagoras A Calculate the unknown side lengths: ? ? 8mm 5m 15mm 6.4m
1) 2) ? ? 8mm 5m 15mm 6.4m 3) 4) 23cm 13m ? 17cm 12m ?
3
Pythagoras A Answers Calculate the unknown side lengths: ? ? 8mm 5m
1) 2) ? ? 8mm 5m 15mm 6.4m 3) 4) 23cm 13m ? 17cm 12m ?
4
Pythagoras B Calculate the unknown lengths: 5.3m 6m 2.2m ? ? 1.2m 6.4m
1) 2) 6m 2.2m ? ? 1.2m 4) 6.4m 2.8m ? 3.7m 3) 10.5m ? 7.4m
5
Pythagoras B Answers Calculate the unknown lengths: 2.2m 5.3m ? 6m ?
1) 2) 6m ? 1.2m 4) 6.4m 2.8m ? 3.7m 7.4m ? 10.5m 3)
6
Pythagoras C Calculate the unknown lengths: A B 8cm 8cm C 5cm 5cm 12cm
1) 2) A B 8cm 8cm C 5cm 5cm 12cm 12cm 3) 2m D 10.5m 3m 5.2m
7
Pythagoras C Answers Calculate the unknown lengths: A B 8cm 8cm C 5cm
1) 2) A B 8cm 8cm C 5cm 5cm 12cm 12cm 3) 2m D 10.5m 3m 5.2m
8
Trigonometry A Calculate the following (check your calculator is set to degrees) 1) Sin 45˚ Cos 45˚ Tan 18˚ 4) Sin 120˚ Cos 104˚ Tan 125˚ 2) 5) 3) 6) Label the triangle sides: Opposite ‘O’ Adjacent ‘A’ Hypotenuse ‘H’ 7) 8) 23˚ 51˚ 9) 10) 62˚ 44˚
9
Trigonometry A Answers
Calculate the following (check your calculator is set to degrees) 1) Sin 45˚ Cos 45˚ Tan 18˚ 4) Sin 120˚ Cos 104˚ Tan 125˚ 2) 5) 3) 6) Label the triangle sides: Opposite ‘O’ Adjacent ‘A’ Hypotenuse ‘H’ 7) 8) 23˚ 51˚ 9) 10) 62˚ 44˚
10
Trigonometry B Calculate the unknown side of the triangle x 120mm
1) x 2) 39˚ 120mm 3.5cm 32˚ x 4) 3) 71˚ 240m 41˚ x 8.8m x
11
Trigonometry B Answers
Calculate the unknown side of the triangle 1) x 2) 39˚ 120mm 3.5cm 32˚ x 4) 3) 71˚ 240m 41˚ x 8.8m x
12
Trigonometry C Calculate the unknown distance x 1.4km x 31˚ 41˚ 16m x
2) 1) x 1.4km x 31˚ 41˚ 16m 3) 4) 5.2m 75˚ x 6.7m 88˚ x
13
Trigonometry C Answers
Calculate the unknown distance 2) 1) x 1.4km x 31˚ 41˚ 16m 3) 4) 5.2m 75˚ x 6.7m 88˚ x
14
Trigonometry D Calculate the unknown angles: 25mm α 8mm 5m α 6.4m 23cm
1) 2) 25mm α 8mm 5m α 6.4m 3) 4) 23cm 13m 17cm α α 12m
15
Trigonometry D Answers
Calculate the unknown angles: 1) 2) 25mm α 8mm 5m α 6.4m 3) 4) 23cm 13m 17cm α α 12m
16
Trigonometry E Calculate the unknown angles 8m α 2.6m 6m 5m α α α 6.4m
2) 1) α 2.6m 6m 5m α 4) 3) α α 6.4m 2.3m 12m 9m
17
Trigonometry E Answers
Calculate the unknown angles 8m 2) 1) α 2.6m 6m 5m α 4) 3) α α 6.4m 2.3m 12m 9m
18
Trigonometry F Calculate the unknown distances or angles N E W S 8km
1) 4) Port 14km 5) 2) 3) 55˚ Port A yacht sails for 23km on a bearing of 233 How far south of the port is the yacht now? 6) α
19
Trigonometry F Answers
Calculate the unknown distances or angles N E W S 8km 4.5km 1) 4) Port 14km 5) 2) 3) 55˚ Port A yacht sails for 23km on a bearing of 233 How far south of the port is the yacht now? 6) α
20
Revision A Find the tree height ‘h’ h 35˚ 9.6m 1.6m
1) Find the length ‘x’ and angle β 2) 2.5cm x β 9.4cm Find the length ‘x’ and angle α 3) 1.8m x 2.1m α
21
Revision A Answers Find the tree height ‘h’ h 35˚ 9.6m 1.6m
1) Find the length ‘x’ and angle β 2) 2.5cm x β 9.4cm Find the length ‘x’ and angle α 3) 1.8m x 2.1m α
22
Revision B Find the height ‘h’ h 48˚ 11m
1) h 48˚ 11m Find the length ‘x’ and angle β 2) β x 1.9km 2.8km Find the length ‘y’ 3) y 63˚ 8.2m
23
Revision B Answers Find the height ‘h’ h 48˚ 11m
1) h 48˚ 11m Find the length ‘x’ and angle β 2) β x 1.9km 2.8km Find the length ‘y’ 3) y 63˚ 8.2m
24
Area Find the Area of the triangle 12m 42˚ 16m
1) 12m 42˚ 16m Find the Area of the triangle 2) 110km 55km 107˚ 80km Find the Area of the triangle 3) 46cm 52˚ 23˚ 18.6cm 105˚ 37.5cm
25
Area Answers Find the Area of the triangle 12m 42˚ 16m
1) 12m 42˚ 16m Find the Area of the triangle 2) 110km 55km 107˚ 80km Find the Area of the triangle 3) 46cm 52˚ 23˚ 18.6cm 105˚ 37.5cm
26
Sine Rule A Find the length ‘L’ 12m L 58˚ 38˚ Find the length ‘m’ 73˚
1) 12m L 58˚ 38˚ Find the length ‘m’ 2) 73˚ m 65˚ 120km Find the length ‘n’ 3) 16cm 33˚ n 145˚
27
Sine Rule A Answer Find the length ‘L’ 12m L 58˚ 38˚
1) 12m L 58˚ 38˚ Find the length ‘m’ 2) 73˚ m 65˚ 120km Find the length ‘n’ 3) 16cm 33˚ n 145˚
28
Sine Rule B Find Angle β 45m 35m β 44˚ Find Angle θ 66˚ 220km θ 290km
1) 45m 35m β 44˚ Find Angle θ 2) 66˚ 220km θ 290km Find Angle 3) 35m 25m 145˚
29
Sine Rule B Answers Find Angle β 45m 35m β 44˚ Find Angle θ 66˚ 220km
1) 45m 35m β 44˚ Find Angle θ 2) 66˚ 220km θ 290km Find Angle 3) 35m 25m 145˚
30
Cosine Rule C Find length ‘x’ 28m x 41˚ 32m Find length ‘y’ 66˚ 120km
1) 28m x 41˚ 32m Find length ‘y’ 2) 66˚ 120km 90km y Find length ‘z’ 3) z 35˚ 21˚ 28m 45m
31
Cosine Rule C Answers Find length ‘x’ 28m x 41˚ 32m Find length ‘y’
1) 28m x 41˚ 32m Find length ‘y’ 2) 66˚ 120km 90km y Find length ‘z’ 3) z 35˚ 21˚ 28m 45m
32
Cosine Rule D Find Angle β 20m 18m β 22m Find Angle θ 90km 150km θ
1) 20m 18m β 22m Find Angle θ 2) 90km 150km θ 180km Find Angle 3) 65m 15m 51m
33
Cosine Rule D Answers Find Angle β 20m 18m β 22m Find Angle θ 90km
1) 20m 18m β 22m Find Angle θ 2) 90km 150km θ 180km Find Angle 3) 65m 15m 51m
34
Revision A Find Angle β 30m β 28m Find Length ‘x’ x 150km 41˚ 180km
1) 30m β 28m Find Length ‘x’ 2) x 150km 41˚ 180km Find Angle 3) 30m 111˚ 28m
35
Revision A Answers Find Angle β 30m β 28m Find Length ‘x’ x 150km 41˚
1) 30m β 28m Find Length ‘x’ 2) x 150km 41˚ 180km Find Angle 3) 30m 111˚ 28m
36
Revision B Find Angle θ 30m 12m θ 24m Find Length ‘x’ x 224km 62˚ 22˚
1) 30m 12m θ 24m Find Length ‘x’ 2) x 224km 62˚ 22˚ Find Length ‘y’ 3) 45m 11˚ y
37
Revision B Answers Find Angle θ 30m 12m θ 24m Find Length ‘x’ x 224km
1) 30m 12m θ 24m Find Length ‘x’ 2) x 224km 62˚ 22˚ Find Length ‘y’ 3) 45m 11˚ y
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.