Presentation is loading. Please wait.

Presentation is loading. Please wait.

11 – 5 Volumes of Pyramids & Cones

Similar presentations


Presentation on theme: "11 – 5 Volumes of Pyramids & Cones"— Presentation transcript:

1 11 – 5 Volumes of Pyramids & Cones
Objectives: 1) Find the volume of a right Pyramid. 2) Find the volume of right Cone.

2 Identical isosceles triangles
Pyramids A Pyramid is a three dimensional figure with a regular polygon as its base and lateral faces are identical isosceles triangles meeting at a point. Identical isosceles triangles base = quadrilateral base = heptagon base = pentagon

3 Volume of Pyramids Volume of a Pyramid:
V = (1/3) Area of the base x height V = (1/3) Ah Volume of a Pyramid = 1/3 x Volume of a Prism = + +

4 Exercise #2 Find the volume of the pyramid height h = 8 m apothem a = 4 m side s = 6 m Volume = 1/3 (area of base) (height) = 1/3 ( 60m2)(8m) = 160 m3 h Area of base = ½ Pa a = ½ (5)(6)(4) = 60 m2 s

5 The Cone + + = Volume of a Cone =
A Cone is a three dimensional solid with a circular base and a curved surface that gradually narrows to a vertex. + + = Volume of a Cone =

6 Exercise #1 = (1/3)(3.14)(1)2(2) = 3.14(1)2(2) = 2.09 m3 = 6.28 m3
Find the volume of a cylinder with a radius r=1 m and height h=2 m. Find the volume of a cone with a radius r=1 m and height h=1 m Volume of a Cylinder = base x height = pr2h = 3.14(1)2(2) = 6.28 m3 Volume of a Cone = (1/3) pr2h = (1/3)(3.14)(1)2(2) = 2.09 m3

7 Vp = ⅓Bh I. Volume of a Pyramid
Pyramid – Is a polyhedron in which one face can be any polygon & the other faces are triangles. Vp = ⅓Bh h Area of the Base A = l•w A = ½bh Height of the pyramid, not to be confused with the slant height (l)

8 Ex.1: Volume of a right Pyramid
Find the volume of a square pyramid with base edges of 15cm & a height of 22cm. Square V = (⅓)Bh = (⅓)l•w•h = (⅓)15•15•22 = (⅓)4950 = 1650cm3 22cm 15cm 15cm

9 Ex.2: Another square pyramid
Find the area of a square pyramid w/ base edges 16ft long & a slant height 17ft. V = (⅓)Bh = (⅓)l•w•h = (⅓)16•16•___ = (⅓)3840 = 1280ft3 a2 + b2 = c2 h = 172 h2 = 225 h = 15 17ft 15 h 8ft 16ft

10 Vc = ⅓Bh II. Volume of a Cone
Cone – Is “pointed” like a pyramid, but its base is a circle. h Vc = ⅓Bh r Area of the Base A = r2 Height of the cone, not to be confused with the slant height (l)

11 Ex.3: Find the volume of the following right cone w/ a diameter of 6in.
Circle V = ⅓Bh = (⅓)r2h = (⅓)(3)2(11) = (⅓)99 = 33 = 103.7in3 11in 3in

12 Ex.4: Volume of a Composite Figure
Volume of Cone first! Vc = ⅓Bh = (⅓)r2h = (⅓)(8)2(10) = (⅓)(640) = 213.3 = 670.2cm3 10cm 4cm Volume of Cylinder NEXT! Vc = Bh = r2h = (8)2(4) = 256 = 804.2cm3 8cm VT = Vc + Vc VT = 670cm cm3 VT = cm3

13 Ex.5: Solve for the missing variable.
The following cone has a volume of 110. What is its radius. V = ⅓Bh V = ⅓(r2)h 110 = (⅓)r2(10) 110 = (⅓)r2(10) 11 = (⅓)r2 33 = r2 r = √(33) = 5.7cm 10cm r

14 Vc = ⅓Bh What have we learned??? Volume of Cones & Pyramids
Height is the actual height of the solid not the slant height!!! Volume of Cones & Pyramids Vc = ⅓Bh h Area of Base h r


Download ppt "11 – 5 Volumes of Pyramids & Cones"

Similar presentations


Ads by Google