Download presentation
Presentation is loading. Please wait.
1
Soil Solution
2
Calculating Activity Coefficients
Debye-Hueckel Limiting Equation: log g = Z2 I1/2 for I < 0.01 Extended Debye-Hueckel Equation: for I < 0.1 Davies Equation: for I < 0.5 B is a temperature dependent constant 25 °C) a is an effective ion size parameter
3
Ions in Solution: Coordination by Water Molecules
4
Ions Pairs (Outer-sphere)
5
Ions Complex (Inner-sphere)
6
Reaction Driving Force
7
Hydrolysis Reactions Fe3+ • 6H2O Fe(OH)2+ • 5H2O
8
Hydrolysis Reactions Fe3+ + H2O <--> Fe(OH)2+ + H+ K = 10-2.19
Fe(OH) H2O <--> Fe(OH) H+ K = Fe(OH) H2O <--> Fe(OH)3o + H+ K = Fe(OH)3o + H2O <--> Fe(OH) H+ K =
9
Hydrolysis Reactions: Anionic
log K H3PO4o H+ + H2PO H2PO4- H+ + HPO HPO42- H+ + PO
10
Complex Equilibria
12
Carbonate Species/Reactions
H2O CO2 (g) CO2(aq) H2CO3 CO2(aq) + H2O H2CO3 H+ + HCO3- HCO3- H+ + CO32- CaCO3 (s) Ca CO32-
13
CO2 Hydration H2O CO2 (g) CO2(aq) CO2(aq) = KH PCO2
KH = Henry's Law Constant = M (at 25 °C)
14
Dissociation Reactions
Log K H2CO3 H+ + HCO HCO3- H+ + CO CaCO3 (s) Ca CO
15
Equilibrium Equations
Log K H2CO3 H+ + HCO HCO3- H+ + CO H2O H+ + OH CaCO3 (s) Ca CO CO2(aq) = KH PCO2
16
Mass and Charge Balance
[C]T = [H2CO3*] + [HCO3-] + [CO32-] + [CaCO3] [H+] + 2[Ca2+] = [OH-] + [HCO3-] + 2[CO32-] charge
17
Species Distribution H2CO3 HCO3- CO32-
18
Simplifying Assumptions (!)
1. At pH < 9, [CO32-] << [HCO3-], [H2CO3*] 2. At PCO2 > atm, [HCO3-] >> [OH-] [HCO3-], pH 7 = mM mass [C]T = [H2CO3*] + [HCO3-] + [CaCO3] [H+] + 2[Ca2+] = [HCO3-] charge
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.