Presentation is loading. Please wait.

Presentation is loading. Please wait.

V. Mezaris, I. Kompatsiaris, N. V. Boulgouris, and M. G. Strintzis

Similar presentations


Presentation on theme: "V. Mezaris, I. Kompatsiaris, N. V. Boulgouris, and M. G. Strintzis"— Presentation transcript:

1 V. Mezaris, I. Kompatsiaris, N. V. Boulgouris, and M. G. Strintzis
Compressed-domain segmentation and ontologies for video indexing and retrieval V. Mezaris, I. Kompatsiaris, N. V. Boulgouris, and M. G. Strintzis & Aristotle University of Thessaloniki Informatics and Telematics Institute

2 Presentation Overview
System Overview Compressed-domain Segmentation Algorithm Indexing Information Extraction Video Indexing and Retrieval Scheme Experimental Results Conclusions

3 Overview – Segmentation and Feature Extraction

4 Compressed-domain Segmentation
Moving object segmentation and tracking Background segmentation Pixel-domain boundary refinement

5 Moving object segmentation and tracking
Iterative macroblock rejection, to detect macroblocks possibly belonging to foreground objects Macroblock-level tracking, to examine the temporal consistency of the output of iterative rejection Clustering of foreground macroblocks to connected regions and assignment to foreground spatiotemporal objects

6 Moving object segmentation and tracking - example

7 Background segmentation
Number of background objects is determined using the maximin algorithm and DC coefficients In I-frames, macroblock clustering using K-Means algorithm and DC coefficients In P-frames, tracking of background objects using macroblock motion vectors

8 Pixel-domain boundary refinement
Creation of pixel-accuracy segmentation masks using a Bayes classifier Full decompression of the frame is necessary

9 Indexing Information Extraction
MPEG-7 descriptors: Motion Activity Dominant Color GoF/GoP Color Contour Shape Motion Trajectory using “Local” Coordinates Motion Trajectory using “Integrated” Coordinates

10 Video Indexing Scheme

11 Video Indexing Scheme – Object Ontology

12 Video Retrieval Process

13 Experimental Results

14 Experimental Results

15 Experimental Results

16 Experimental Results

17 Retrieval Experiments

18 Conclusions Unsupervised algorithm for compressed-domain spatiotemporal segmentation Performs in real-time (5.02 ms per CIF I-/P-frame) Intermediate-level descriptors for user-friendly retrieval No key-frame/key-sequences or manual annotation required for query initiation Relevance feedback mechanism (SVM-based) for flexibility and efficiency


Download ppt "V. Mezaris, I. Kompatsiaris, N. V. Boulgouris, and M. G. Strintzis"

Similar presentations


Ads by Google