Download presentation
Presentation is loading. Please wait.
1
THE ACCURACY OF PROPERTY FORECASTING IN THE UK
GRAEME NEWELL University of Western Sydney and PATRICK McALLISTER University of Reading June 2009
2
PROPERTY FORECASTING Importance Uncertainty Procedures
quantitative - qualitative Role of judgement 2008 property environment % % - -4.7% % - -2.9% France @ -0.9%
3
PREVIOUS RESEARCH Forecasting rents, yields etc.
Econometric/structural modelling Comparison of forecasting procedures Simple forecasts versus econometric models
4
ACCURACY OF PROPERTY EXPERT FORECASTS
US: Ling (2005) UK: McAllister, Newell and Matysiak(2008); Tsolacos (2006) Australia: Newell and Karantonis (2003); Newell and MacFarlane (2006) Consensus and individual forecasts
5
ACCURACY ISSUES Uncertainty Disagreement Conservative forecasts; bias
Inertia Group differences “Numbers” versus “turning points” Individual forecasters - consistency banding - persistence
6
PURPOSE Assess accuracy of UK property forecasts re: 2008
IPD % IPD % IPD % IPD -21.2% Accuracy - uncertainty disagreement Behavioural issues
7
METHODOLOGY Investment Property Forum
“Survey of Independent Forecasts” 1998 – 2009; quarterly; UK Expert opinions : #= 18-37 - property advisors fund managers - equity brokers Capital returns, rental growth, total returns Property sub-sectors Forecasts generated to end of year - up to 3 years ahead
8
METHODOLOGY Focus = 2008 total return forecasts Up to 36 months ahead
36M, 33M, …, 9M, 6M, 3M # participants: 24 – 37 # property advisors: 10 – 18 # fund managers: 9 – 16 # equity brokers: 3 – 5 Statistical analysis - MAE MAPE - range - Theil U1 statistic
9
Target = -22.1%
10
MEAN ABSOLUTE ERROR 36M 24M 12M 6M 3M All : 22.4 19.7 13.3 8.4 5.3 PAs
36M 24M 12M 6M 3M All : 22.4 19.7 13.3 8.4 5.3 PAs 22.8 20.1 13.5 8.7 5.5 FMs 21.7 19.1 12.8 7.5 4.3 EBs 22.5 18.7 9.1 4.6 Office 23.8 20.8 13.1 7.7 Retail 22.3 19.9 14.4 9.5 6.0 Industrial 21.9 19.3 13.4 9.0 5.8
11
MEAN ABSOLUTE PERCENTAGE ERROR
36M 24M 12M 6M 3M All : 101.1% 89.1% 60.2% 38.0% 24.0% PAs 103.0% 90.7% 61.2% 39.1% 24.9% FMs 98.2% 86.5% 57.9% 33.9% 19.5% EBs 101.9% 84.7% 60.3% 41.0% 20.8% Office 106.2% 92.8% 58.4% 34.4% 20.5% Retail 98.9% 88.2% 63.5% 42.0% 26.6% Industrial 103.4% 91.0% 63.4% 42.2% 27.4%
12
THEIL U1 STATISTIC 36M 24M 12M 6M 3M All : 0.80 0.70 0.44 0.25 0.14
36M 24M 12M 6M 3M All : 0.80 0.70 0.44 0.25 0.14 PAs 0.81 0.72 0.45 0.26 FMs 0.79 0.69 0.43 0.22 0.11 EBs 0.66 0.28 0.12 Office 0.82 Retail 0.47 0.15 Industrial 0.16
13
AVERAGE RANGE 36M 24M 12M 6M 3M All : 10.30 10.70 10.40 10.20 9.50 PAs
36M 24M 12M 6M 3M All : 10.30 10.70 10.40 10.20 9.50 PAs 7.10 7.40 7.50 5.60 FMs 8.40 8.30 7.70 6.60 EBs 5.70 7.00 7.30 6.80
14
“BEST” FORECASTER: MAE
36M 24M 12M 6M 3M All : 16.70 14.10 7.80 3.70 0.60 PAs 18.70 16.00 9.30 5.10 2.10 FMs 17.30 14.80 8.60 4.00 1.10 EBs 19.60 15.40 10.10 5.90
15
“BEST” FORECASTER: MAPE
36M 24M 12M 6M 3M All : 75.50% 63.70% 35.40% 16.70% 2.70% PAs 84.60% 72.60% 42.10% 23.10% 9.50% FMs 78.30% 67.10% 38.70% 17.90% 5.00% EBs 88.90% 69.60% 45.50% 26.50% Theil 0.58 0.48 0.25 0.12 0.01
16
“BEST” FORECASTER Groups: Individuals: PAs: 0% - FMs: 75% - EBs:25%
17
“WORST” FORECASTER: MAE
36M 24M 12M 6M 3M All : 27.0 24.8 18.3 13.9 10.1 PAs 25.8 23.6 17.0 12.7 7.7 FMs 23.1 16.3 10.5 EBs 25.3 22.4 17.4 12.6
18
“WORST” FORECASTER: MAPE
36M 24M 12M 6M 3M All : 122.20% 112.00% 82.60% 62.90% 45.70% PAs 116.90% 106.60% 76.90% 57.50% 34.80% FMs 116.50% 104.60% 73.70% 47.50% EBs 114.70% 101.30% 78.50% 57.00% Theil 0.91 0.86 0.67 0.47 0.30
19
“WORST” FORECASTER Groups: Individuals: PAs: 42% - FMs: 0% - EBs:58%
20
PROPERTY FORECASTING IMPLICATIONS
Accuracy re: 2008 property forecasts Uncertainty versus disagreement Conservative bias Improvements over time : 36M 3M Critical times Group differences Sector differences Other issues re: changes in forecasts - impact of news expected returns (IPD monthly) - anchoring 2009 property forecasts?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.