Download presentation
Presentation is loading. Please wait.
1
(on behalf of the RENO collaboration)
Energy calibration June-Ho Choi Dongshin University (on behalf of the RENO collaboration)
2
Calibration system
3
Calibration system(1D)
Gamma catcher Teflon weight Radioactive source timing pulley wire pulley Target servo motor Servo driver DC adaptor controller control pc
4
Calibration system(1D)
Target (mm) Catcher 1200 1650 800 1100 400 550 -400 -550 -800 -1100 -1200 -1650
5
Calibration system(3D)
horizontal probe handle servo for vertical moving control box arm holder vertical slide panel shaft servo for azimuthal rotation extension arm main vertical arm sub vertical arm slider arm connector
6
Calibration system(3D)
Target 200 400 400 400 mm
7
Energy reconstruction
Qtot : sum of hit PMT charges greater than 0.3 p.e. in a time window of -100 to +50 ns. Temporal charge correction(IBD n-Gd) p.e to MeV conversion function E(MeV) Law Qtot Corrected Qtot PMT gain change Removal of Flashing PMTs The decrease of the LS attenuation length
8
Temporal charge correction
9
Source data taking & calibration
We have 9 radioactivity source for calibration points for energy calibration. - Cs, Ge, Co, Cf, AmBe, NiCf, Mn, Na, Zn Source data taking has been performed using by 1D calibration system regularly (every month) Gain calibration was done by Cs(single photon) source after data taking Energy calibration
10
Radioactivity Sources
Isotope Activity (Bq) Half-life Emissions Energies (MeV) production 137Cs 37 kBq 30.1 years Single gamma 0.662 SPECTRUM TECHNIQUES 60Co 5.27 years Multi gamma 1.173, 1.332 68Ge 40.48 kBq 270.8 days 0.511 Eckert & Ziegler 252Cf 7.4 kBq 6.245 years Neutron Neutron capture 2.223(n-H) , 7.937(n-Gd) 54Mn 312.3 days 0.835 65Zn 245 days 1.116 22Na 2.6 years 1.821 241Am-Be 340 kBq 432.2 yesars 4.95 RENO 210Po-Be 37 MBq 138 days Cf-Ni < 7.4 kBq 8.99
11
Gain calibration Near detector Far detector
12
Procedure of energy calibration
We use 6 points for energy calibration. 1) 137Cs(0.662MeV),68Ge(1.022MeV), 60Co(2.5057MeV), Neutron capture (n-H : MeV , n-C: 4.95 MeV , n-Gd: 7.937MeV (target) n-Ni : 8.539MeV( gamma catcher) ) 2) Data was taken at center position( target & gamma catcher) every month 3) Average p.e of source data points 4) Correction effect from calibration source(MC) Energy absorption of source wrapper & container Quenching effort of multi gamma p.e response of different particle (gamma .vs. positron) Energy conversion of center to uniform 5) NPE to MeV conversion function : 6) Cross-check with electron energy spectrum from β‐decays from 12B and 12N
13
Procedure of energy calibration
Corrected Qtot(p.e) of radioactivity sources Energy absorption of source package & container Quenching effort of multi gamma p.e response of different particle (gamma .vs. positron) Energy conversion of center to uniform Corresponding IBD Prompt Qtot(p.e) Fitting with non-linearity function
14
p.e distribution of radioactivity sources (Target)
137Cs 68Ge (0.662 MeV) (1.022 MeV) Po-Be (4.95 MeV) 60Co 252Cf ( MeV) (2.223 & MeV)
15
p.e distribution of radioactivity sources (Target)
54Mn 65Zn (0.535 MeV) (1.116 MeV) 65Zn (1.116 MeV)
16
p.e distribution of radioactivity sources (gamma catcher)
137Cs 68Ge (0.662 MeV) (1.022 MeV) 60Co 252Cf ( MeV) (2.223 MeV)
17
p.e distribution of radioactivity sources (gamma catcher)
54Mn 65Zn (0.535 MeV) (1.116 MeV) 65Zn (1.116 MeV)
18
[Energy absorption of wrapper & container]
Source wrapper 68Ge Source container
19
[Energy absorption of package & container]
Cs - Without capsule - With capsule Co - Without capsule - With capsule 1.7% 1.6% Source container Air Source package
20
[quenching effort of multi gammas]
Co - Single gamma - Two gamma - Single gamma - Two gamma 4.46% 3.08%
21
[Quenching effort at each energy]
- Gamma - Positron
22
[p.e. response of different particles]
- Gamma - Positron - Proton
23
γ→e+= Source MC (E) Positron MC (E−1.022Me𝑉)
Conversion of gamma to IBD prompt energy γ→e+= Source MC (E) Positron MC (E−1.022Me𝑉) Source MC (center) Positron ± 0.094 ± 0.085
24
Center→Uniform= IBD Delayed P.E. nocut Fitting Function(−1000 mm)
Energy conversion of center to uniform Center→Uniform= IBD Delayed P.E. nocut Fitting Function(−1000 mm) Uniform 1000 mm 1000 mm Center
25
Nonlinear response of scintillation energy
(Target)
26
The Fitted parameter values of the energy conversion function (Target)
Far Near P0 275.9±1.0 270.1±1.3 P1 (1.698±0.151)x10-2 (1.701±0.247)x10-2 P2 (1.228±0.123)x10-4 (1.161±0.117)x10-4 P3 (1.735±0.176)x10-4 (1.794±0.299)x10-4
27
Nonlinear response of scintillation energy
(gamma catcher)
28
The Fitted parameter values of the energy conversion function (Catcher)
Far Near P0 284.2± 3.6 277.2 ± 2.3 P1 0.022 ± 0.007 0.019 ± 0.002 P2 ± ± P3 ± ±
30
137Cs , 60Co 252Cf Source container 68Ge
31
Low Energy Electron Quenching
Light yield of scintillator In low energy region Collision stopping power of LS is function of electron energy Different by matter Berger & Seltzer Equation <composition of LS> LAB PPO bis-MSB 860g/L 3g/L 0.03g/L
32
Measurement of Birk’s Constant
<Experimental Setup> Source : 137Cs Energy of electron = 662KeV – Ge Detector Light yield of LS = PMT ADC 137Cs Ge detector calibration is done using known gamma source, 137Cs, 22Na 137Cs : 662KeV, 22Na : 551KeV 22Na
33
Measurement of Birk’s Constant
Energy of electron [KeV] Light Yield Light yield over Energy of electron e e+00 KB = cm/KeV Energy of electron [KeV]
34
Summary table 𝑃. 𝐸 𝑀 𝑒𝑉=𝑅𝑎𝑤 𝑝.𝑒. × 𝐶 𝑐𝑒𝑛𝑡𝑒𝑟−𝑡𝑜−𝑈𝑛𝑖𝑓𝑜𝑟𝑚 × 𝐶 𝛾−𝑡𝑜− 𝑒 +
DATA 137Cs 68Ge H-Capture (2.223MeV) 60Co C-Capture (4.95MeV) Gd-Capture (7.937MeV) FAR Raw p.e ± 0.769 ± 2.074 ± 2.307 ± 3.454 ± 2020.5 ± 0.798 p.e MeV ± 1.162 ± 2.101 ± 1.066 ± 1.454 ± 2.848 ± 0.111 NEAR ± 0.723 ± 1.738 ± 2.342 ± 3.116 ± ± 0.252 ± 1.068 ± 1.749 ± 1.042 ± 1.288 ± 2.577 ± 𝑃. 𝐸 𝑀 𝑒𝑉=𝑅𝑎𝑤 𝑝.𝑒. × 𝐶 𝑐𝑒𝑛𝑡𝑒𝑟−𝑡𝑜−𝑈𝑛𝑖𝑓𝑜𝑟𝑚 × 𝐶 𝛾−𝑡𝑜− 𝑒 +
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.