Download presentation
Presentation is loading. Please wait.
1
Linear Transformation, Null Spaces and Ranges
2
Linear Transformations
Definition:
3
Linear Transformations
Note:
4
Linear Transformations
Example:
5
Linear Transformations
Example:
6
Linear Transformations
Example:
7
Linear Transformations
Example:
8
Linear Transformations
Example:
9
Linear Transformations
Example:
10
The Null Space and Range
Definition T T V W V W O N(T ) R(T )
11
The Null Space and Range
Example:
12
The Null Space and Range
Example:
13
The Null Space and Range
Example:
14
Conclusion Let T be linear transformation from Rn to Rm.
The null space N(T) is a subspace of Rn. The range R(T) is a subspace of Rm. dim(N(T)) + dim(R(T)) = n. Let A be an m×n matrix The rank of A is the number of leading 1s in the reduced row echelon form of A. rank(A) + nullity(A) = n. An n×n matrix A is nonsingular if and only if rank(A) = n and nullity(A) = 0.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.